1.1 Electronics and digital systems
1.2 Gates
1.3 Boolean algebra and equations
1.4 Digital circuit simulator
1.5 Timing diagrams
1.6 Equations to/from circuits
1.7 Basic circuit drawing conventions
1.8 Basic properties of Boolean algebra
1.9 Sum-of-products form
1.10 Sum-of-minterms form
1.11 Binary and counting
1.12 Truth tables
1.13 Product-of-sums form and maxterms
1.14 Top-down design + examples
1.15 Why study digital design
1.16 Multiple outputs

2.1 Two-level combinational logic simplification
2.2 K-maps: Introduction
2.3 3- and 4-variable K-maps
2.4 K-map examples
2.5 DeMorgan’s Law
2.6 XOR / XNOR gates
2.7 NAND / NOR (universal gates)
2.8 Muxes
2.9 Example: Multiplexed automobile above-mirror display
2.10 Decoders
2.11 Encoders
2.12 Don’t cares
2.13 Prime implicants and minimal covers
2.14 Quine-McCluskey

3.1 SR latches
3.2 Clocks, D flip-flops, and registers
3.3 Example: Flight attendant call button using a D flip-flop
3.4 FSMs
3.5 FSM simulator
3.6 Capturing behavior with FSMs
3.7 Example: Flight-attendant call button using an FSM
3.8 FSM examples
3.9 FSMs to circuits (design)
3.10 Example: Laser surgery system using an FSM
3.11 Example: Secure car key
3.12 Reducing states
3.13 State encodings
3.14 Mealy FSMs
3.15 FSM issues
3.16 Controller clock frequency
3.17 Circuits to FSMs (analysis)
3.18 Non-ideal flip-flop behavior
3.19 Product Profile: Pacemaker

4.2 Signed numbers in binary
4.3 Subtractors
4.4 Comparators
4.5 Example: Color space converter: RGB to CMYK
4.6 N-bit muxes
4.8 Example: Above-mirror display using parallel-load registers
4.9 Shifters
4.10 Strength reduction
4.11 Example: Above-mirror display using shift registers
4.12 Counters and timers
4.13 Example: Laser surgery system using a timer
4.14 Multipliers (array-style)
4.15 Product Profile: Ultrasound

5.1 HLSMs: Introduction
5.2 HLSMs with variables
5.3 HLSMs with a loop
5.4 HLSM simulator
5.5 Capturing behavior with HLSMs
5.6 Datapaths for HLSMs
5.7 Example: Soda dispenser
5.8 HLSMs to circuits: RTL design
5.9 Example: Laser-based distance measurer
5.10 RTL timing
5.12 Product Profile: Digital video
5.13 Behavioral-level design: Programs to gates

6.3 Register files
6.4 Example: Above-mirror display using a register file
6.5 Multi-function registers
6.6 ALUs
6.7 SRAM and DRAM
6.8 RAM design
6.9 ROM design
6.10 Queues (FIFOs)
6.11 Chip economics
6.12 Composing memory
6.13 Product Profile: Cell phone

7.1 Introduction to HDLs (Verilog)
7.2 Combinational logic (Verilog)
7.3 Identifiers (Verilog)
7.4 Testbench (Verilog)
7.5 Sequential logic (Verilog)
7.6 Datapath components: Structural (Verilog)
7.7 RTL design (Verilog)
7.8 Datapath components: Behavioral (Verilog)
7.9 Example: Laser-based distance measurer (Verilog)

8.1 Introduction to HDLs (VHDL)
8.2 Combinational logic (VHDL)
8.3 Identifiers (VHDL)
8.4 Testbench (VHDL)
8.5 Sequential logic (VHDL)
8.6 Datapath components: Structural (VHDL)
8.7 RTL design (VHDL)
8.8 Datapath components: Behavioral (VHDL)
8.9 Example: Laser-based distance measurer (VHDL)

9.1 ASCII and Unicode
9.2 Unsigned binary numbers
9.3 Signed binary numbers: Two’s complement
9.5 General number bases
9.6 Floating-point numbers
9.7 Floating-point arithmetic
9.8 Arrays
9.9 Records
9.10 Graphics
9.11 Image and video data
9.12 Audio
9.13 Naming numerous bits

10.1 Gray code
10.2 JK and T latches and flip-flops

## A hands-on approach to teaching Digital Design that combines theory and practice

Digital Design emphasizes a top-down behavior-to-circuits perspective, for combinational, sequential, and high-level (register-transfer-level) design. The book’s HDL (Verilog and VHDL) coverage is intentionally template-focused, teaching just enough of the HDLs to understand the templates. Includes:

• Web-based simulators, including circuit, finite-state machine, high-level state machine, and datapath simulators
• Hands-on learning tools, including Boolean algebra solver, K-map minimizer, state machine capture, and more
• Hundred of participation activities, including questions, animations and auto-graded challenge activities

### Emphasis on RTL design

Director of Content Authoring and Research Dr. Yamuna Rajasekhar explains how the Digital Design zyBook provides students with a crucial, real-world understanding of RTL design:

## What is a zyBook?

Digital Design is a web-native, interactive zyBook that helps students visualize concepts to learn faster and more effectively than with a traditional textbook. (Check out our research.)

Since 2012, over 1,700 academic institutions have adopted digital zyBooks to transform their STEM education.

### zyBooks benefit both students and instructors:

• Instructor benefits
• Continuous publication model updates your course with the latest content and technologies
• Robust reporting gives you insight into studentsâ€™ progress, reading and participation
• Build quizzes and exams with hundreds of included test questions
• Student benefits
• Learning questions and other content serve as an interactive form of reading
• Instant feedback on labs and homework
• Concepts come to life through extensive animations embedded into the interactive content
• Review learning content before exams with different questions and challenge activities
• Save chapters as PDFs to reference the material at any time

### FSM Simulator Tool

In this video, zyBooks’ Dr. Rajasekhar demonstrates how the FSM Simulator tool works in Digital Design:

## Authors

Frank Vahid
Professor of Computer Science and Engineering, Univ. of California, Riverside

Roman Lysecky
Professor of Electrical and Computer Engineering,Â Univ. of Arizona