zyBook - Data Structures Essentials with Java Examples Cover Art

Table of Contents

1.1 Data structures
1.2 Introduction to algorithms
1.3 Relation between data structures and algorithms
1.4 Abstract data types
1.5 Applications of ADTs
1.6 Algorithm efficiency

2.1 Searching and algorithms
2.2 Binary search
2.3 Java: Linear and binary search
2.4 Constant time operations
2.5 Growth of functions and complexity
2.6 O notation
2.7 Algorithm analysis
2.8 Recursive definitions
2.9 Recursive algorithms
2.10 Analyzing the time complexity of recursive algorithms

3.1 Sorting: Introduction
3.2 Selection sort
3.3 Java: Selection sort
3.4 Insertion sort
3.5 Java: Insertion sort
3.6 Shell sort
3.7 Java: Shell sort
3.8 Quicksort
3.9 Java: Quicksort
3.10 Merge sort
3.11 Java: Merge sort
3.12 Radix sort
3.13 Java: Radix sort
3.14 Overview of fast sorting algorithms
3.15 Java: Sorting with different operators

4.1 List abstract data type (ADT)
4.2 Singly-linked lists
4.3 Singly-linked lists: Insert
4.4 Singly-linked lists: Remove
4.5 Linked list search
4.6 Java: Singly-linked lists
4.7 Doubly-linked lists
4.8 Doubly-linked lists: Insert
4.9 Doubly-linked lists: Remove
4.10 Java: Doubly-linked lists
4.11 Linked list traversal
4.12 Sorting linked lists
4.13 Java: Sorting linked lists
4.14 Linked list dummy nodes
4.15 Linked lists: Recursion
4.16 Stack abstract data type (ADT)
4.17 Stacks using linked lists
4.18 Queue abstract data type (ADT)
4.19 Queues using linked lists
4.20 Java: Stacks and queues
4.21 Deque abstract data type (ADT)
4.22 Array-based lists
4.23 Java: Array-based list

5.1 Hash tables
5.2 Chaining
5.3 Linear probing
5.4 Quadratic probing
5.5 Double hashing
5.6 Hash table resizing
5.7 Common hash functions
5.8 Direct hashing
5.9 Hashing Algorithms: Cryptography, Password Hashing
5.10 Java: Hash tables

6.1 Binary trees
6.2 Applications of trees
6.3 Binary search trees
6.4 BST search algorithm
6.5 BST insert algorithm
6.6 BST remove algorithm
6.7 BST inorder traversal
6.8 BST height and insertion order
6.9 BST parent node pointers
6.10 BST: Recursion
6.11 Tries
6.12 Java: Binary search tree

7.1 AVL: A balanced tree
7.2 AVL rotations
7.3 AVL insertions
7.4 AVL removals
7.5 Java: AVL Trees
7.6 Red-black tree: A balanced tree
7.7 Red-black tree: Rotations
7.8 Red-black tree: Insertion
7.9 Red-black tree: Removal
7.10 Java: Red-black trees

8.1 Heaps
8.2 Heaps using arrays
8.3 Java: Heaps
8.4 Heap sort
8.5 Java: Heap sort
8.6 Priority queue abstract data type (ADT)
8.7 Treaps

9.1 Set abstract data type
9.2 Set operations
9.3 Static and dynamic set operations
9.4 Java: Set implementation

10.1 Graphs: Introduction
10.2 Applications of graphs
10.3 Graph representations: Adjacency lists
10.4 Graph representations: Adjacency matrices
10.5 Graphs: Breadth-first search
10.6 Graphs: Depth-first search
10.7 Directed graphs
10.8 Weighted graphs
10.9 Java: Graphs
10.10 Java: Breadth-first search
10.11 Java: Depth-first search
10.12 Algorithm: Dijkstra’s shortest path
10.13 Java: Dijkstra’s shortest path
10.14 Algorithm: Bellman-Ford’s shortest path
10.15 Java: Bellman-Ford’s shortest path
10.16 Topological sort
10.17 Java: Topological sort
10.18 Minimum spanning tree
10.19 Java: Minimum spanning tree
10.20 All pairs shortest path
10.21 Java: All pairs shortest path

11.1 Huffman compression
11.2 Heuristics
11.3 Java: Heuristics
11.4 Greedy algorithms
11.5 Java: Greedy algorithms
11.6 Dynamic programming
11.7 Java: Dynamic programming

12.1 B-trees
12.2 2-3-4 tree search algorithm
12.3 2-3-4 tree insert algorithm
12.4 2-3-4 tree rotations and fusion
12.5 2-3-4 tree removal
12.6 Java: 2-3-4 trees

13.1 Bubble sort
13.2 Quickselect
13.3 Java: Quickselect
13.4 Bucket sort
13.5 List data structure
13.6 Circular lists

14.1 Turing machines introduction
14.2 Turing machine components
14.3 Complexity classes
14.4 Java: Turing machine example

What You’ll Find In This zyBook:

More action with less text.

  • Features Java-specific code examples throughout, grounded in essential data structures and algorithms
  • Animations and tools are an excellent match for teaching data structures
  • Over 40 challenge activities are included to provide extra practice for students. Each is auto-graded and features randomly-generated content.
  • Test banks are also included for every section.

Instructors: Interested in evaluating this zyBook for your class? Sign up for a Free Trial and check out the first chapter of any zyBook today!

The zyBooks Approach

Less text doesn’t mean less learning.

Studying data structures and algorithms often represents a person’s first study of the “science” of computing, beyond just programming. Mastery of these concepts is part of the foundation of the discipline of computing, leading to computing professionals as distinct from programmers.

Data structures is an extremely visual subject, forming an excellent match for the extensive use of animations that typifies a zyBook. Embedded learning questions help the reader understand and remember concepts.

The content is maximally modular to enable configuration by instructors. Instructors can rearrange sections, set sections as optional, add instructor’s notes to sections, and more.

“It is already clear that this represents the future of programming text books. Its basic expository content is the equal of any paper text, but it really shines in using the natural advantages of online vs. static teaching material ­ animation and interactivity ­ to excellent effect, giving the student an additional dimension of insight.”

Authors

Roman Lysecky
Professor of Electrical and Computer Engineering, Univ. of Arizona

Frank Vahid
Professor of Computer Science and Engineering, Univ. of California, Riverside

Evan Olds
Content Developer, zyBooks