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An analysis on the effectiveness of randomized, auto-graded 
activities in introductory programming courses 

 
Abstract 
 
Introductory programming courses are often overwhelming to students who have no prior coding 
experience. The design of an introductory programming course (CS1) can influence a student's 
choice of pursuing computer science in their career. Research shows that breaking down 
programming concepts to simpler and smaller pieces decreases the cognitive load and struggle 
for students thereby increasing student interest and retention. 
 
This paper analyzes data from four online, interactive introductory programming textbooks with 
activities that use a scaffolded approach to teach students programming concepts. The textbooks 
used are Programming in C++, in Java, in Python, and in C, respectively. The textbooks cover a 
variety of programming concepts from basic topics such as variables and branches to more 
advanced concepts such as recursion, across multiple languages. The textbooks have a series of 
randomized, auto-graded activities presented in a multi-level format, where each level is 
progressively harder than the previous. The activities are designed as code reading or code 
writing exercises to assess students' mastery to read and write code.  
 
We analyzed over 726 such activities with 2179 levels attempted by 107,825 students across 572 
universities. We study the average completion rate, the average time spent on an activity, and the 
average number of attempts per problem level. We further examined the study trends for how 
often students repeated completed activities for practice. The data validates the effectiveness of a 
scaffolding approach, and shows the effectiveness of randomized, auto-graded activities to teach 
programming concepts.  
 
Introduction 
 
The design of a CS1 course plays a crucial role in shaping a student's decision to pursue a career 
or degree in computer science. Research has shown that the way programming concepts are 
introduced and taught can significantly impact a student's interest and success in the field, and 
effective course design can help engage beginners and foster their interest in the subject [1]. In 
the following three sections, we discuss key factors from the literature that influence student 
motivation and course success. We also outline the motivation behind this study and define the 
concept of "effectiveness" as it will be used throughout the paper to validate our findings. 
 
Scaffolding 
 
An important characteristic of an effective learning activity includes an appropriate level of 
difficulty that builds upon prior knowledge through scaffolding. Scaffolding is an instructional 
approach that involves breaking down learning tasks into smaller, more manageable pieces and 
providing support at each step. In the context of introductory programming courses, scaffolding 
helps students build their skills incrementally by gradually increasing the complexity of 
programming tasks. Scaffolded activities present problems in a step-by-step manner, where each 
step builds upon the previous one. Research indicates that this method is highly effective in 



 

designing homework assignments, as it helps students retain concepts more effectively [2], [3], 
[4]. By significantly reducing the mental effort required to process information (known as 
"cognitive load") [5], scaffolding increases student interest and learning potential. This approach 
not only helps students understand complex programming concepts but also boosts confidence 
and efficacy [6]. 
 
Feedback 
 
In addition to scaffolding, an effective learning activity incorporates timely and constructive 
feedback that is both immediate and clear. Timely feedback allows students to address mistakes 
while the material is still fresh in their minds, maximizing the opportunity for learning. 
Constructive feedback provides step-by-step explanations of the expected answers, using clear 
language to guide students in identifying the specific areas of their mistakes. This approach 
encourages students to discover and correct errors on their own without revealing the solution 
outright. Furthermore, such feedback helps address student confusion, misconceptions, and 
recurring gaps by clarifying difficult concepts and providing targeted guidance where needed 
most [7], [8]. Together, these elements reinforce understanding, boost students' confidence, and 
ensure a deeper grasp of the material. 
 
Accessibility 
 
Developed by the Center for Universal Design, the general principles of universal design [9] 
emphasize creating environments that are accessible and inclusive for all. These principles serve 
as a foundation for ensuring that learning activities are effective and equitable. Accessibility is 
crucial for addressing the diverse needs of students, including varying levels of knowledge, 
abilities, and learning preferences. Simple and intuitive designs, interactive elements, hands-on 
exercises, and clear instructions should be employed to enable meaningful engagement for all 
learners [10]. Additionally, features such as alternative text for visuals, closed captions for audio 
content, and user-friendly interfaces promote equity by accommodating students with 
disabilities. By adhering to the vision of universal design, learning activities can foster an 
inclusive environment where every student has the opportunity to succeed [11]. 
 
Motivation 
 
This paper addresses the challenge of making introductory programming courses more effective 
for beginners by focusing on the effectiveness of a scaffolding approach with randomized, 
auto-graded activities. The objective is to analyze the impact of this approach on student 
performance and engagement. By comparing data from both randomized and scaffolded 
activities as well as non-randomized and non-scaffolded activities across four programming 
books (C++, Java, Python, and C), we aim to provide insights into students' study habits and 
trends. Specifically, we will examine how often students repeat completed activities for practice, 
the average completion rate, the time spent on activities, and the number of attempts per problem 
level.  
 
We define effectiveness as the extent to which a learning activity achieves its intended purpose, 
aligns with classroom learning objectives, fosters student engagement, and promotes mastery of 



 

concepts. This mastery leads to growth and enables students to apply gained skills in a variety of 
ways. We acknowledge that later chapters in the course are inherently more challenging, as they 
build upon previously introduced concepts and require students to synthesize and apply their 
accumulated knowledge in increasingly complex ways. Despite this natural progression in 
difficulty, our activities in these later chapters are designed to remain effective by reinforcing 
foundational knowledge, maintaining student engagement, and providing targeted support to 
ensure continued mastery of the material. 
 
Challenge Activities 
 
A Challenge Activity (CA) is a mastery-based assessment, and is our online textbook's version of 
a homework problem [12]. We define three types of CAs included in our online interactive 
programming books: CodeOutput, CodeWriting, and CodeWarmup. All CA types assess a 
student's mastery of programming by introducing code snippets that students have to either write 
code, or read code to identify the output. Further information for each activity type is provided in 
the following sections or in previous work [12], and a comparison of the CA types is shown in 
Table 1. 
 
Table 1. Comparison of CA types. 
CA Type Minor error 

notification 
(whitespace, 
newline) 

Explanation Randomization Scaffolded 
levels 

CodeWriting ✔ ✔ ✔ ✔ 

CodeOutput ✔ ✔ ✔ ✔ 

CodeWarmup ✔ ✔ ✖ ✖ 

 
CodeOutput 
 
CodeOutput CAs (or "code analysis" CAs [12]) assess a student's mastery in programming by 
providing students with code that students must read and analyze to provide the code's text 
output as their solution.  
 
CodeWriting CAs 
 
CodeWriting CAs assess a student's mastery in programming by providing incomplete code that 
a student must complete given the activity's prompt. The prompt shows one or more examples of 
the expected output/result depending on the different cases examined so that the expected 
behavior and output of the code is clear to the student. CodeWriting CAs are highly randomized, 
meaning that the activities support three different forms of randomization: meaningful, cosmetic, 
and test case [12].  
 



 

CodeWarmup CAs 
 
Similar to CodeWriting CAs, CodeWarmup CAs assess a student's mastery in programming by 
providing incomplete code that a student must complete given the activity's prompt; however, 
CodeWarmup CAs only have one level and do not contain randomization. These CAs are 
designed to introduce students to simple problems initially, before progressing to more complex 
topics that require the mastery of multiple learning objectives. 
 
Methods and Metrics 
 
This study follows an observational design, as it evaluates student performance, engagement, and 
retry behaviors in CAs across four languages, C++, Java, Python, and C. The analyzed metrics 
include CA characteristics such as type, number of CAs, levels, and the chapter and section 
associated with each CA, as well as student behaviors including the number of students, scores, 
and reattempts before and after completion. The metrics were collected through Mode Analytics, 
which stores information from the platform hosting the CAs. Using SQL and Python, the data is 
extracted and organized to identify trends and patterns in student behaviors.  
 
To evaluate the effectiveness of our learning activities, as defined by their ability to achieve 
intended purposes, align with classroom learning objectives, foster student engagement, and 
promote mastery of concepts, we analyzed a range of key metrics. Specifically, we examined 
students' performance and behavior, the scaffolding of CAs, and students' effort. These metrics 
were chosen to provide an assessment of how well our CAs supported student growth, facilitated 
mastery, and enabled the application of skills in progressively complex contexts, aligning with 
our definition of effectiveness. 
 
Student performance 
 
Student performance was categorized into four distinct groups based on performance exhibited 
by the students. The definitions for each group are as follows: 

1. Perfect score students: Students who attempted at least 40 CAs and received a perfect 
score on all CAs attempted. 

2. Imperfect score students NOT struggling with later topics: Students who attempted at 
least 40 CAs, did not receive a perfect score on all the CAs, and had a correlation of 
≤0.05 between their decreasing scores and CA positions.  

3. Imperfect score students struggling more with later topics: Students who attempted at 
least 40 CAs, did not receive a perfect score on all the CAs, and had a correlation of 
>0.05 between their decreasing scores and CA positions.  

4. Low participation students: Students who attempted fewer than 40 CAs, and were 
excluded from further correlation analysis.  

 



 

Student behavior  
 
Student behavior was categorized into six distinct groups based on their behavior with CAs. The 
definitions for each group are as follows: 

1. Once-and-done: Students who passed the CA on their first attempt and did not retry the 
CA after passing. 

2. Refiners: Students who passed the CA on their first attempt but chose to retry the 
activity at least once to improve their understanding. 

3. Grade motivated: Students who failed at least once but passed without retrying after 
their first success. 

4. Earnest learners: Students who failed at least once but demonstrated persistence by 
retrying the activity after passing. 

5. Earnest strugglers: Students who made at least three failed attempts but ultimately gave 
up without passing the activity. 

6. Lowly motivated: Students who only made one failed attempt then gave up without 
further effort.  

Scaffolding  
 
Scaffolding was evaluated by looking into the number of CA levels for each CA type across all 
four programming languages. This was further analyzed by examining the correlation between 
the number of levels and the corresponding passing rates for each CA in order to assess how 
progressively layered concepts influenced student performance. 
 
Student effort  
 
Student effort was categorized into two primary groups based on their level of engagement:  

1. Highly proactive group: Students who attempted at least 10 CAs of each type, thus 
attempting at least 30 CAs.  

2. Semi-inactive group: Students who made at most 10 attempts on each type of CA, thus 
attempting at most 30 CAs.  

Results 
 
Demographics 
 
A total number of 726 unique CAs across the four languages was analyzed, and 103,750 unique 
students attempted at least one CA over 572 unique institutions. The distribution of unique 
institutions categorized by the institution type (i.e. 4-year, 2-year, high school, and other) is 
shown in Table 2. To maintain data anonymity, further identifying details about the institutions 
and student population were not available for this study. 



 

Table 2. Distribution of unique institution types. 
Institution type Four-year Two-year High school Other Total 

Number of 
institutions 

391 151 7 23 572 

 
Data was collected and studied for all four languages. Our presentation focuses on C++ to 
highlight the patterns we observed when the results are homogeneous across languages. Only in 
cases where the data show language-specific differences are all four languages compared 
together.  
 
The C++ book contains a total of 222 CAs available to instructors. The average number of CAs 
assigned by instructors to their students is 99. Students attempted an average of 77 CAs in a book 
they subscribed to. These numbers are comparable across all four languages. The numbers of 
student enrollment vary across different languages as shown in Table 3. 
 
Table 3. Distribution of student enrollment per language. 
Language C++ Java Python C 

Student enrollment 18,985 39,484 38,754 6,541 

 
Student Performance 
 
When analyzing student performance, we examined the correlation between imperfect student 
scores and the relative position of the corresponding CA. In all languages:  

● Imperfect score students NOT struggling with later topics had a ≤0.05 correlation 
between students' decreasing scores and CA positions, suggesting that these students did 
not have a harder time with later CAs.  

● Imperfect score students struggling more with later topics had a >0.05 correlation 
between students' decreasing scores and CA positions, suggesting that these students 
struggled more with later CAs.  

The distribution of students in each category of performance is similar across all languages. 
Figure 1 provides a visualization of the data for C++. 
 



 

 
Figure 1: Student performance distribution for C++. 
 
Low participation students did not provide enough data points to draw meaningful conclusions, 
leading to unreliable results. Thus, the low participation students were excluded from further 
analysis.  
 
Imperfect score students include those who struggle more with later topics and those who do not. 
Figure 2 visualizes the correlation between the imperfect student scores and CA position in the 
C++ book. As students progress through the book, the difficulty of CAs increases. The mean 
correlation is 0.071 for students of the C++ book. The correlations being significantly less than 1 
suggests that struggling students generally do not find later topics, which require more prior 
knowledge, significantly harder to learn, assuming they complete the CAs in chronological order.  
 



 

 
Figure 2. Distribution of correlation between student's decreased passing rate and CA 
position for C++. 
 
This correlation, 0.071, while positive, is within expected ranges, indicating that the increase in 
difficulty is gradual. It is reasonable to assume that students will naturally have a slightly harder 
time with later chapters. Thus, this finding further confirms the observation that later chapters are 
more challenging to students without suggesting any unreasonable difficulty.  
 
Student behavior 
 
Students were categorized into six distinct behavioral groups based on their interactions with 
CAs: Once-and-done, Refiners, Grade motivated, Earnest learners, Earnest strugglers, and 
Lowly motivated. These categories, defined in section Methods and Metrics, reflect variations of 
engagement and performance. Data collected across all languages show very similar distributions 
of these behavioral groups. Figure 3 illustrates the distribution of these behavioral groups for 
C++, and Table 4 shows the total number of attempts per CA type in C++. 
 
Once-and-Done Student Attempts 
 
CodeOutput accounted for the majority of once-and-done attempts, with 61.93% of all attempts 
being completed on the first and only try as shown in Figure 3. This suggests that CodeOutput is 
generally the easiest type of CA to complete in a single attempt. 
 
 



 

 
Figure 3. Study behavior group distribution. 
 
Refiner Students 
 
Across all CA types, Refiner students represent a small percentage of students (2.57-2.92%) who 
strive for mastery beyond passing (Figure 3). In CodeWriting CAs, Refiners average the highest 
number of after-passing attempts at 1.93, which is a significantly higher average than other CA 
types (Figure 4), suggesting that these students see value in revisiting these exercises to perfect 
their understanding. This underscores the capabilities of CodeWriting CAs to be utilized multiple 
times, providing students with new variations for continued practice. CodeWarmup CAs show 
the lowest at 1.10 average attempts, indicating limited after-passing engagement which is 
expected, as these CAs lack any form of randomization. 

 
Figure 4. Average number of attempts made after the refiner students pass. 



 

Grade-Motivated Students 
 
Grade motivated students make a strong effort, suggesting that grades drive significant 
engagement.  The average number of attempts for these students peaked for CodeWriting CAs 
with 3.13 attempts before students passed the problem (Figure 5). CodeOutput has the lowest 
average attempts (1.78), reinforcing its low level of difficulty.  

 
Figure 5. Average number of attempts made before the grade motivated students pass. 
 
Earnest learners 
 
The earnest learners group demonstrates a growth mindset, engaging with the material even after 
passing the CA successfully. They are a small percentage (1.73-3.40%), but show notable 
persistence (Figure 3). CodeWarmup CA attempts have the biggest difference after passing, 
suggesting that this group of students found less value retrying these CAs after passing.  
 
CodeWriting CAs had the highest number of attempts before and after passing, at 3.91 attempts 
before and 2.75 after (Figure 6 and Figure 7). This suggests that CodeWriting CAs are more 
challenging than other types, but students still benefit from retries, likely due to the 
randomization, which enhances practice and mastery. 
 



 

 
Figure 6. Average number of attempts made before the earnest learner students pass. 

 
Figure 7. Average number of attempts made after the earnest learner students pass. 
 
Earnest Strugglers 
 
The earnest strugglers group demonstrate the importance of support for struggling students. They 
represent the smallest group (0.21-1.18%) (Figure 3) of students but attempt the most before 
passing.  
 
For this group, CodeWriting CAs required the highest effort, with 8.36 average attempts, 
aligning with its higher difficulty (Figure 8). CodeWarmup CAs prove to be the next difficult CA 



 

type, with CodeOutput CAs once again being the type with the least amount of overall average 
attempts, further indicating its low difficulty. 

 
Figure 8. Average number of attempts made before the earnest strugglers give up. 
 
Lowly Motivated 
 
The presence of the lowly motivated group suggests they may need different motivational goals 
or interests. They represent less than 1% for all CA types (Figure 3), and average the lowest 
number of average attempts before giving up at 1.26 (Figure 9). 

 
Figure 9. Average number of attempts made before the lowly motivated students give up. 
 
 



 

 
Overall 
 
The differences in attempts before and after passing a CA reflect the varying levels of difficulty 
and engagement for each CA type. CodeOutput CAs appear to be the best for reinforcing basic 
skills and addressing simple concepts, while CodeWriting CAs consistently present the greatest 
challenge for students. Notably, students working on CodeWriting CAs tend to have the highest 
number of attempts and retries across all CA types. 
 
CodeWriting and CodeWarmup CAs demonstrate the most consistent and balanced patterns in 
the number of attempts and average retries (Figure 6) and (Figure 7). CodeWriting CAs generally 
require slightly more attempts before passing compared to CodeWarmup CAs, indicating 
CodeWarmup CAs may be easier than CodeWriting CAs. CodeWriting appears particularly 
appealing to earnest learners aiming for mastery, while CodeOutput CAs offer less of a challenge 
but better for those struggling as indicated by the behavior of earnest strugglers (Figure 3). These 
patterns are observed across all languages. 
 
Scaffolding 
 
To assess whether the number of levels in CAs correlates to increased effort or impacts student 
success, CA performance data was analyzed, focusing on passing rates, student attempts, and the 
role of scaffolding across multiple levels. Data collected across various languages show 
consistent results. So, only the results from C++ are highlighted here. The distribution of C++ 
CAs by level of scaffolding is presented in Table 4.  
 
Table 4. Number of CAs with various levels of scaffolding in C++. 

 
Passing rates across CAs with varying levels is illustrated in Figure 10. Single level CAs and 
multi-level CAs (2 to 7 levels) maintain consistently high passing rates, ranging from 91.20% to 
97.56%. These differences are not statistically significant and may reflect variations in CA 
difficulty unrelated to the number of levels. While CAs with multiple levels naturally require 
more effort, the gradual progression in difficulty aligned with effective scaffolding, helps 
maintain student engagement and does not serve as a significant deterrent.  
 

Scaffolding 1-level 2-level 3-level 4-level 5-level 6-level 7-level 

Number of 
CAs 

39 68 55 31 21 5 1 



 

 
Figure 10. Success rates on CAs with multiple levels of scaffolding in C++. 
 
Student Effort 
 
Given the large number of activities available to students, we wanted to understand the types of 
CAs that the students put in most of their time and effort. The number of CAs varies by type for 
each language. Table 5 summarizes the CA count by type for each language. Two groups of 
students were identified and studied based on the time and effort they put into the CAs: The 
highly proactive group and the semi-inactive group.  
 
Table 5. CA Type and Language Distribution. 
Number of CAs by type C++ Java Python C 

CodeOutput 68 58 51 35 

CodeWriting 69 65 63 49 

CodeWarmup 38 53 35 62 

 
Across all languages, the highly proactive students did an average of 103 total CAs, and the 
average scores on these CAs were at least 90%, indicating a strong level of commitment. For 
C++, Java, and Python, a majority of those students preferred CodeWriting, possibly due to its 
challenge or perceived learning benefits. In C, those students preferred CodeWarmup. A 
significantly fewer number of students in this group preferred CodeOutput. This group achieved 
the highest mean scores compared to the semi-inactive group, reflecting mastery and persistence 
(Figure 11). 
 



 

 
Figure 11. Highly proactive students CA type engagement. 
 
The semi-inactive group averaged only 11 CAs, indicating minimal interaction with the CAs. For 
C++ and Java, those students had a preference for CodeOutput CAs, likely due to this CA type's 
simplicity and ease of completion. For Python, those students preferred CodeWarmup. For C, 
those students preferred CodeWriting. Overall, this group had lower mean scores, particularly 
with CodeWriting, with the lowest mean score of 70.37% in Python, suggesting this group 
struggles with more complex tasks (Figure 12). 

 
Figure 12. Semi-inactive students CA type engagement.  
 



 

This trend aligns with broader metrics of student engagement. In books with at least 40 available 
CAs, the median score on attempted CAs was 98.04%, reflecting students' strong performance 
on tasks they chose to engage with. However, the median score across all available 
CAs–considering both completed and unattempted tasks–was 85.47%. This highlights the 
potential impact of effort on overall achievement: proactive students not only attempted more 
CAs but performed significantly better across all languages and CA types. Semi-inactive 
students focused on simpler tasks requiring minimal effort, which limited their overall 
engagement and achievement. 
 
Discussion and future work 
 
Our findings indicate that students generally do not find later topics, which require greater prior 
knowledge, significantly harder to learn when they complete CAs in the intended chronological 
order. Among the different types of CAs, CodeOutput CAs are particularly effective for 
reinforcing basic skills, making them well-suited for foundational concepts. In contrast, 
CodeWarmup CAs pose greater challenges that foster deeper understanding but may require 
additional support for struggling students to maximize their effectiveness. Finally, CodeWriting 
CAs strike a balance by appealing to grade-motivated students while also fostering opportunities 
for mastery.  
 
While CAs with multiple levels demand more effort, their gradual progression in 
difficulty—consistent with scaffolding principles—helps maintain student engagement and does 
not act as a deterrent. Additionally, our analysis highlights the significant role of student 
proactivity: proactive students consistently engage more with CAs and achieve higher 
performance across all CA types, underscoring the strong correlation between effort and 
achievement. In contrast, less active students tend to favor simpler tasks that require minimal 
effort, limiting their potential for deeper learning. 
 
Future work could explore the development of additional CAs that span learning objectives 
across multiple sections or chapters, promoting broader concept integration. For example, 
combining code writing with Parsons puzzles [13] can help students develop the hierarchical 
mental structure [14], [15] of how to solve a problem at multiple resolutions. 
 
In light of the findings, we see great potential for CAs to be used to measure students' learning 
outcomes in assessment tools such as exams. Typically, a CS1 exam may include both long and 
short questions. Long questions assess students' skills on integrating multiple concepts into a full 
scale solution. Short questions cover conceptual understanding, logical deduction, and 
small-scale problem solving with a few lines of code. Randomized CodeOutput CAs ask students 
to interpret how code works by producing the expected outcomes. Successful completion of such 
CAs indicate students' ability to apply logical deduction based on their understanding of the 
code, thus reaching the application level of competence in the Bloom taxonomy [16]. 
Randomized CodeWriting CA, on the other hand, can assess students' ability to create a solution 
for a small-scale problem, thus reaching the synthesis level of competence in the same taxonomy. 
Our exams platform supports a variety of question types, including the highly randomized 
CodeOutput and CodeWriting CAs. With the high degree of randomization, these assessment 
tools can measure students' performance based on genuine critical thinking skills rather than 



 

memorized answers. Additionally, comparing exam outcomes when a CodeWriting CA is 
assigned as homework versus when it is not, may provide useful insights into how prior exposure 
influences mastery and retention. 
 
We aim to explore how scaffolded, auto-graded activities can better support students with 
varying levels of engagement and preparedness. While our current approach effectively aids 
proactive learners, we recognize the need to address the challenges faced by students who may 
struggle to engage independently. One potential improvement is to incorporate more explicit 
feedback mechanisms that encourage students to seek help when needed, reinforcing that 
reaching out for clarification is part of the learning process. Additionally, we plan to examine 
how continuous revisions to conceptual assessments can enhance accessibility and learning 
outcomes for all students, particularly those who may require additional guidance. 
 
Further work could design activities that span broader objectives and explore their integration 
into assessments to evaluate long-term mastery. Additionally, a long-term study on CS student 
success may involve surveying students on their overall course performance and their 
preparedness for advanced CS courses upon completion of CS1. 
 
Conclusion 
 
This study demonstrates the effectiveness of a scaffolding approach in CS1 courses for teaching 
programming concepts across four languages (C++, Java, Python, and C). By analyzing 726 
activities with 2,179 levels attempted by over 107,825 students, we validated the role of 
randomized, auto-graded activities in fostering engagement, and mastery. Gradual progression in 
difficulty supports learning and engagement, with some activities reinforcing foundational skills 
and others fostering deeper understanding. Proactive engagement strongly correlates with 
improved performance.  
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