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Using the Free Coral Language and Simulator to Simplify First-Year 

Programming Courses 
 

Abstract 

 

Many engineering majors require first-year students to learn programming. Unfortunately, 

commercial languages like Python, C, C++, and Java were designed for professionals, not 

learners, and thus have nuances that can cause students to struggle. Such struggle can lead to 

frustration, low grades, and potentially to dropping their programming classes or even switching 

majors. The Coral language was created in 2017 to address this issue. Coral is ultra-simple, 

looking almost like pseudocode, with fewer than 10 instruction types. Coral has a free web-based 

educational simulator, which auto-derives a graphical flowchart, and which executes the code 

and flowchart visually while showing variable updates in memory. Unlike other educational 

programming environments like Alice, Scratch, or Snap, Coral was designed for college 

students, with an emphasis on leading smoothly into a commercial language. Though Coral is 

now used by many thousands of students in CS0 classes at dozens of universities, in Fall 2019 

our university experimented with introducing Coral in its CS1 class, where one 80-student 

section was taught programming in Coral for the first 5 weeks, then C++ for the second 5 weeks. 

Those Coral-to-C++ students did equally well on the identical C++ final exam compared to the 

students in other class sections who learned C++ the entire term, and their code style was better. 

Coral-to-C++ students' evaluations were also very positive, and teachers reported an 

exceptionally smooth class startup using Coral. The C++ class sections were already highly 

optimized with strong performance and excellent student evaluations. These Coral-to-C++ 

results suggest that Coral can be used to enable a simpler and smoother start to a freshmen 

programming class, while still achieving the desired learning of a commercial language. And, as 

the Coral approach is improved, one might begin to see Coral-to-C++ students outperforming 

C++-only students as well. The Coral simulator and tutorial are available for free online [1]. 

 

Introduction 

 

Coral [1] is an ultra-simple text and flowchart language designed to introduce college or high-

school students to programming. In contrast to many educational programming languages that 

use blocks, like Scratch [2] or Snap [3], Coral is specifically intended to lead students into 

commercial languages like Java, Python, C++, or C.  

 

Coral was introduced in 2017 as a joint project by the University of California at Riverside, the 

University of Arizona, and zyBooks [4]. A key feature of their offering is a free educational 

simulator at CoralLanguage.org, along with a tutorial. The simulator auto-derives the flowchart 

from the text, laying out the flowchart to closely match the code. The simulator allows step-by-

step execution, highlighting each text statement or flowchart node. The simulator shows 

variables in memory, inputs being consumed, and output being generated on a simulated screen. 

Coral has been shown to improve a CS0 class at the University of Arkansas that previously had 

students drawing flowcharts on paper [5]. For further information on Coral, we refer the reader 

to Coral's website [1] or to read the introductory paper by Coral's authors [6]. Figure 1 shows a 

sample program in Coral's ultra-simple text syntax, and an equivalent flowchart syntax. 



 

 
Figure 1. (Left) Sample Coral program using Coral's ultra-simple text syntax. (Right) 

Same sample program using Coral's flowchart syntax (auto-derived from the text by the 

simulator). 

 

In this work, we sought to determine the feasibility of using Coral in a traditional CS1 class that 

teaches C++. Our university is a major public university with 25,000 students, typically ranked 

in the top 50-75 among all U.S. universities. Our CS1 teaches C++ to 300-500 students per 10-

week quarter, broken into sections of about 80 students. All sections are usually kept in sync, 

using the same syllabus, textbook, assignments, exams, etc., even though different sections might 

have a different instructor. In Fall 2019, for one 80-student section (the "Coral-to-C++" section), 

we introduced Coral for the first 5 weeks of the class up to the midterm, and then switched to 

C++ for the last 5 weeks. Those students did many of the same C++ assignments in the latter half 

of the course as the C++-only sections and took the same final exam as the other sections. Our 

engineering college uses "learning communities" such that all computing-major freshmen are 

scheduled into specific sections; to avoid bias, the Coral-to-C++ section was not one of those 

sections, but rather was a section almost entirely with non-computing majors.  

 

Starting with Coral has big advantages for instructors and students. For students, nearly all focus 

is on learning programming concepts and solving problems using programming logic; the Coral 

language's simplicity and the informative messages from the Coral simulator eliminate nearly all 

early tool and syntax issues. For instructors, not only is the initial workload reduced due to fewer 

questions/worries, but instructors can use the simulator to visually demonstrate step-by-step code 

execution, flowchart representations of branches and loops, variables being updated in memory, 

arrays being created in memory, and function call creating a local execution situation. But, 

questions remain as to whether starting in Coral and switching to C++ yields to equally 

proficient learning of C++, and whether that approach will be well-received by students, who 

might be frustrated not learning a "real" language or stressed by the conversion from one 

language to another mid-term. This paper presents performance data and survey data comparing 

the Coral-to-C++ section to the C++-only section to address those questions. 

 



 

Performance: Grades 

 

Our first analysis was to compare student performance with respect to attained grades between 

the C++-only section and the Coral-to-C++ section. We collected the gradebooks for each 

section at the end of the quarter and averaged student grades across the grading categories of the 

class. The total grade was broken into categories: Midterm exam, Final exam, Participation 

activities (PAs, meaning readings and online learning questions), Challenge activities (CAs, 

meaning homework problems), Lab activities (LAs, meaning programming assignments), and 

class participation. As class participation grade accounts for only a small portion of the overall 

grade and everyone achieves nearly 100%, we excluded participation from the analysis. 

 

Figure 2 shows average grades (y-axis) for each category (x-axis), with the left bars for C++-

only sections and the right bars for the Coral-to-C++ section. The midterm and final exams are 

also shown broken down into their multiple choice (MC) and coding parts (each exam's time and 

points was half MC and half coding). Students that did not take the midterm exam or final exam 

were excluded, as they likely dropped the class. Significance values from a 2-tailed t-test are 

shown below each category. 

 
Figure 2. Grade performance analysis comparing the C++-only section with the Coral-to-

C++ section. 

 

Figure 2 summarizes the results of the grade performance analysis. Looking specifically at the 

identical C++ final exam that all sections took, the difference is not statistically significant (p = 

0.11, which is not < 0.05). The small difference is even less relevant given that the Coral-to-

C++section was mostly non-computing majors, and thus usually slightly underperforms the 

sections that have most of the computing majors.  

 

We do see in Figure 2 that the Coral-to-C++ section scored significantly lower on the PAs, CAs, 

and LAs. We realized the cause to be excessive workload -- we packed too much C++ into the 

second half of the class, much of it redundant with the Coral, so many students decided to not do 

all the assigned work in the second half of the term. Because PAs, CAs, and LAs contribute to 

30% of the course grade, the overall course grade was lower too. But the learning outcomes as 

measured by the final exam suggest that C++ itself was learned just as well. In our most recent 

offering, we have corrected for the excessive workload in the second half of the term.  

 



 

Stress survey 

 

For several years, we have given CS1 students weekly surveys in lecture and lab. In week 8, we 

give what we internally call a "stress survey" that aims to learn how students are feeling about 

the class – stressed, confident, happy, worried, etc. The stress survey has 18 agreement 

statements and a 6-point Likert Scale: Strongly agree (5), Agree (4), Slightly agree (3), Slightly 

disagree (2), Disagree (1), and Strongly disagree (0). To reduce bias, some questions are phrased 

so that agreement is more favorable ("I enjoy the class") while others so that disagreement is 

more favorable ("I am anxious about the final"). Table 1 shows the questions and average 

response value for each question. For readability, Table 1 is organized with all agreement-

favorable questions first, and disagreement-favorable questions second, but importantly, students 

received the questions in a randomized order. More favorable responses for each question have 

been shaded grey. A '*' has been added to the p-value column if the response is significant (p < 

0.05). 

 

Table 1. Results from the "Stress survey" given to students in week 8. 

 

 C++-only Coral-to-C++ p-value 

I enjoy the class. 3.67 4.06 0.02* 

This class is an appropriate amount of work per week 
for the number of units. 

3.49 3.28 0.24 

I was prepared for the midterm exam. 3.28 3.49 0.31 

I feel prepared for the final exam. 2.53 2.30 0.26 

The weekly zyLab programming assignments were 
enjoyable. 

3.10 3.02 0.67 

The weekly zyLab programming assignments 
contributed to my success in the course. 

3.68 3.82 0.36 

I learned a lot from the weekly zyLab programming 
assignments. 

3.77 3.91 0.32 

I frequently collaborated with others on the weekly 
programming assignments. 

2.40 1.54 <0.01* 

I feel confident in my ability to write a small (< 50 line) 
useful program. 

3.26 3.17 0.71 

I am often anxious about the class. 2.47 2.63 0.46 

I spend a lot of time in the class figuring out system 
issues rather than learning programming. 

2.02 1.74 0.16 

The number of tools and websites for this class are 
somewhat overwhelming. 

2.00 1.89 0.58 

I have missed a deadline because I thought it was 
another time. 

1.98 2.13 0.57 

I have looked for class info but couldn't find it. 1.77 1.31 0.01* 



 

I felt anxious before the midterm exam. 3.39 3.45 0.79 

I feel anxious about the final exam. 3.81 4.06 0.17 

The weekly zyLab programming assignments were 
stressful. 

2.60 3.12 <0.01* 

The weekly zyLab programming assignments were 
frustrating. 

2.73 3.26 <0.01* 

 

Table 1 shows the responses are similar for both sections; most differences are not statistically 

significant. Questions with p < 0.05 show that the Coral-to-C++ section enjoyed the class more, 

and found all class information easier, while the C++-only section collaborated more and found 

the LA's to be less stressful and frustrating. As mentioned in the previous section, we believe the 

Coral-to-C++ class found the LA's more frustrating due to excessive workload in the second half 

of the term. 

 

Student survey feedback on the Coral/C++ experiment 

 

In addition to our weekly surveys including the stress survey highlighted above, we gave the 

Coral-to-C++ students a special survey at the end of the term. Questions were agreement 

statements with a 5-point Likert Scale: Strongly agree (4), Agree (3), Neutral (2), Disagree (1), 

and Strongly disagree (0). There were also several free response questions. 64 of the 80 total 

students responded.  

 

The results suggest that students enjoyed learning Coral (3.1) and saw the value of learning 

programming concepts like loops or functions in Coral before C++ (2.86). Students did not 

struggle with Coral syntax (1.31), they found the Coral simulator helpful (3.23), and they thought 

learning Coral first made C++ easier to learn (2.75). However, students were neutral on 

preferring to learn C++ over Coral first (1.97) and whether or not learning Coral first caused 

them to struggle more with C++ syntax (1.54). Overall, the responses indicate that students were 

generally happy, and the Coral-to-C++ approach did not bother them (even though we gave them 

too much work in the second half of the term). 

 

One free response question was: "Please comment on the approach of learning Coral before C++ 

(pros, cons, experiences, etc)." The comments were quite positive, such as those below.  

• “Learning the concepts we learned in Coral in C++ was like extra review. (was easier to 

understand and make a connection with).” 

• “It was the best! I actually understood functions better the 2nd time around. Even though 

some coding was different such as having to use "cout" instead of "put to output" it was 

still easy!” 

• “Learning Coral first was AMAZING. It made learning concepts so much easier since the 

language and form was intuitive! Then C++ concepts were easy, and we could focus on 

mastering language specifics.” 

 



 

The few negative comments were not really negative. They mostly came from students who had 

prior programming experience and would have preferred to jump into C++, but who seemed to 

understand and accept the role of Coral. Such comments included those below.  

• “Coral wasn't my first programming language but I do think that its psuedocode style 

syntax is more helpful for introducing fundamental concepts as it gives more of a general 

introduction as opposed to the "here's how to do this in this specific language" style of 

teaching.” 

• “Since I already had experience programming before it didn't make too much of a 

difference to learn Coral before C++ but I could see why it would be easier for people 

who had no coding experience to learn Coral before C++.” 

 

There were also a few negative comments about feeling rushed and overwhelmed in the final 

weeks of learning C++, which we attribute to our own mistake of assigning too much work. We 

have since corrected that issue in the most recent offering. 

 

Conclusion 

 

Starting a CS1 class by teaching Coral and then switching to a commercial language like C++ 

has numerous advantages: For students, Coral eliminates nearly all tool and syntax issues in the 

first half of a class, while for instructors, demand for help is greatly reduced plus instructors can 

use Coral's powerful educational simulator to help students understand each new construct and 

how programs execute. In this work, we showed that a Coral-to-C++ approach does not hamper 

learning of C++; students performed nearly identically on a C++ final exam (multiple choice and 

coding) as students who took CS1 entirely in C++. Furthermore, we showed that, rather than 

being frustrated not learning a commercial language initially or stressed due to switching 

languages mid-term, instead students were generally quite happy with the Coral-to-C++ 

approach. 
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