
Towards Comprehensive Metrics for Programming Cheat
Detection

Frank Vahid
Computer Science and Engineering

 University of California, Riverside
 Riverside, California, USA

 vahid@cs.ucr.edu
Also with zyBooks

Ashley Pang
Computer Science and Engineering

 University of California, Riverside
 Riverside, California, USA

apang024@ucr.edu

Benjamin Denzler
 Computer Science and Engineering
University of California, Riverside

 Riverside, California, USA
bdenz001@ucr.edu

ABSTRACT

Automated assistance for detecting cheating on programs has long
been investigated by CS educators, especially with the rise of
“homework help” websites over the past decade, and recently with
AI tools like ChatGPT. The main detection approach has long been
flagging similar submission pairs. Modern cheating, like hiring
contractors or using ChatGPT, may not yield such similarity. And,
cases based on similarity alone may be weak. Thus, over the past
several years, building on logs from an online program auto-
grader (zyBooks), we developed additional “cheating concern
metrics”: points rate, style anomalies, style inconsistencies, IP
address anomalies, code replacements, and initial copying. Most
are defined not only for one programming assignment but also
across a set of assignments. The metrics can help catch more kinds
of cheating, provide more compelling evidence of cheating, reduce
false cheating accusations based on similarity alone, and help
instructors focus their limited cheat-detection time on the most
egregious cases. We describe the techniques, and our experiences
(via our own Python scripts and a commercial tool) for several
terms, showing benefits of having more metrics than just
similarity. Of 30 cheating cases over 3 terms and 300 students,
most were based on metrics beyond similarity, all students
admitted, none later contested, and time per student was only 1-2
hours (far less than previously). Our goal is to prevent cheating in
the first place, by reducing opportunity via strong detection tools,
as part of a multi-faceted approach to having students truly learn
and stay out of trouble.

CCS CONCEPTS
• Social and professional topics - Professional topics - Computing
education - Computing education programs - Computer science
education - CS1

KEYWORDS
CS1, cheating, plagiarism, AI, homework, programming
assignments

ACM Reference format:

Frank Vahid, Ashley Pang, and Benjamin Denzler. 2024. Towards
Comprehensive Metrics for Programming Cheat Detection. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2024). March 20-23, 2024. Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3626252.3630951

1 INTRODUCTION

Cheating is a serious problem in programming courses [1]. Most
cheating detection focuses on similarity checking [2, 3, 4, 5], which
has detected much cheating over the years. However, similarity
checking is known to have false positives, such as for small
programs, yet a “many small programs” approach is popular
especially in CS1 [6]. It can also have false positives when not
much logical variation exists in possible solutions, even for larger
programs. Pang [7] suggests introducing variability-inducing
requirements to increase solution variability, but of course the
approach is limited and does make the programs a bit harder for
students. Other researchers have proposed complementary cheat
detection techniques. For example, as some platforms record code
history, some propose examining history for normal incremental
development versus copying [8, 9]. Tahaei [10] proposed
examining code history for cases where a student’s code history
shows one program being entirely replaced by another program,
which is a common sign of copying. Similarly, Alzahrani [11]
developed a tool to detect “drastic change” in code history. Drastic
changes could be students copying a solution immediately,
hopping between found solutions, or giving up on their attempts
and pasting an online solution.

We switched to the zyBooks program auto-grader several years
ago, which appears to be one of the most widely used program
auto-graders in the U.S. [12]. zyBooks provides an IDE that records
data on every program a student runs, including date, time, IP
address, the code itself, test case results, score, and more. We
naturally began using this log data to assist in our cheat detection
efforts beyond similarity detection alone, writing scripts to
measure time spent, detect code replacements, detect unusual
constructs often found in contractor-written solutions, etc. These
scripts are being developed as part of an NSF-funded project and
the plan is to make them available to instructors in the near future.
We also began using a beta tool from zyBooks itself that has begun
incorporating such metrics. In this paper, we report our
experiences developing and using this more comprehensive set of

This work is licensed under a Creative Commons
Attribution International 4.0 License.

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA.
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03.
https://doi.org/10.1145/3626252.3630951

1361

mailto:vahid@cs.ucr.edu
mailto:vahid@cs.ucr.edu
mailto:apang024@ucr.edu
mailto:apang024@ucr.edu
https://doi.org/10.1145/3626252.3630951
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626252.3630951
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630951&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Frank Vahid, Ashley Pang, & Benjamin Denzler

cheat-detection metrics to detect cheating in our CS1 class at a
large public university. We believe such tools will eventually
become commonplace in more CS courses, to detect more kinds of
cheating, and hopefully as a strong deterrent that prevents such
cheating, akin to how nobody speeds right past a police officer.
Deterrents of course are just one part of a more comprehensive
approach to keeping students focused on learning.

2 CHEATING CONCERN METRICS

2.1 Similarity

Similarity highlighting is the most common form of cheat
detection. Some similarity checking tools are standalone like
MOSS [2] and Jplag [3]. Most program autograders come with
built-in similarity checking [13, 14, 15, 16]. With most similarity
checkers from those autograders or in research tools [2, 3, 4, 5], for
a given programming assignment (what we will call a “lab”),
instructors are provided a sorted list of highly-similar program
pairs (or a group) as seen in Figure 1.

Figure 1: List of highly-similar program pairs sorted by
similarity concern. Each row is a student (names
intentionally omitted).

Figure 2: Most similarity checkers will highlight the code
that is deemed similar across a pair of programs.

For a given pair, the similar code is highlighted, as in Figure 2.
Similarity checkers typically ignore insignificant variations, like
variable names, whitespace, comments, and even some statement
ordering. With our tool, we have found that having 90% or higher
similarity is suggestive of cheating, at least for labs with expected
variation in solutions.

Most similarity checkers focus on one lab. Running a checker on
every lab, and investigating similar pairs, can be cumbersome,

especially if students are given multiple labs per week. Thus, in
practice, many instructors run similarity checking on a few labs,
such as one selected lab per week, or one from every few weeks.

Instructors are often interested in focusing their limited cheat-
checking time on the most egregious cheaters. As such, we built a
higher-level of similarity concern on top of a MOSS-like similarity
checker. Given a set of labs, the technique runs the similarity
checker on each lab, and for each student it counts the number of
labs for which the student has a 90% or higher similarity with at
least one other student. Because not all labs have much solution
variability, we exclude low-variability labs where more than half
the students have 90% or more similarity with at least one other
student. We find low-variability labs with the assumption that the
majority of the class isn’t cheating (which could in some cases not
be true of course). The remaining labs are “high variability” labs
where 90% similarity is more likely to suggest cheating. We define
the following metrics for each student:

• Similarity average: The average of the highest similarity
score per lab for this student across all high-variability
labs.

• Similar labs count: The number of high-variability labs
where the student has 90% or higher similarity with at
least one other student. Low-variability labs are ignored.

For every metric, we desire to have a “normalized” score that
suggests to instructors the likelihood of the metric value indicating
cheating. A score of 1 should almost certainly mean cheating (but
never for sure -- instructors must always investigate), 0 means no
evidence of cheating, and 0.5 is a border above which instructors
might wish to investigate. We thus provide the following
normalized similarity metric:

• Similarity concern: We map similarity average to the
range 0 to 1 using standard deviations, with 0.5 being 1
standard deviation above the class average, and 1 being
2 standard deviations above. (Those standard deviation
values could be adjusted).

This is just one approach to mapping, which has worked well for
us. Other more rigorously-determined approaches are possible and
a subject for future investigation.

We also track which other students appeared as highly-similar to
the current student for each counted lab. If another student
appears in half or more of the counted labs, their name appears in
a “potential collaborator” list with an orange flag. If the other
student appears in 2/3, we red flag them as a “very likely
collaborator”.

2.2 Points Rate Concern

If an instructor requires all development be in a tool that records
develop time and run information, then those values can help
detect cheating: Students with unusually low time or runs, yet
high scores, might be copying from external sources (of course,
they might just be proficient programmers). Thus, we provide
some development metrics to instructors, as shown in Figure 3.

1362

Towards Comprehensive Metrics for Programming Cheat Detection SIGCSE 2024, March 20–23, 2024, Portland, OR, USA WOODSTOCK’18, June, 2018, El Paso, Texas USA

 Figure 3: Student roster showing time and points metrics.
Each row is a student (names intentionally omitted).

Relevant metrics include the time each student spent, and the
number of times the student ran their code. Students with low
time (or runs) but high scores are suspect. As such, we define the
following normalized metric:

• Points-rate concern: We calculate the ratio of TotalScore
/ TotalTime for each student. Those scores are mapped
to 0 to 1 such that 1 standard deviation above the class
average yields 0.5, and 2 standard deviations yields 1.

Again, the standard deviation values could be adjusted; we have
found the above work well. We note that the standard deviation
approach assumes a class with sufficient students doing the labs,
such as perhaps 25 or more students. For smaller classes, another
mapping approach might be needed.

2.3 Style Anomalies

Most instructors have their class follow a particular “coding style”,
usually (but not always) following their textbook’s style. Being
required to follow a coding style is common in industry too.
Example style features include:

• Variable naming (camelCase, under_score, etc.)
• Brace style (opening brace on the same line or next line)
• Variable declaration rules (at top or spread out,

initialized or not, multiple per line or not, etc.)
• Constructs taught (user-defined functions or not,

conditional operators or not, etc.)
• Indent amount (2 space, 3 space, 4 space, etc.)
• Use of while (true) loops and break (common with AI)

Typically dozens of such style features exist.

When students copy code from online sources, have an external
person program for them (friend, contractor), or let AI program for
them, often those programs’ style departs from the class style. We
call those “style anomalies”.

Figure 4 shows code with several style anomalies from our class’
style: late declarations, short variable names, initialized
declarations, calling of an untaught “min” function, no blank lines,
and more. Figure 5 shows some code that is left-aligned, usually
resulting from a copy-paste of code from another source.

Our technique defines about 20 style features (a unique set of ~20
for each of Python, Java, C++, and C), with defaults set to a
common style but configurable by an instructor. Then, we define
the following metric:

• Style anomaly count: A count of the number of style
anomalies found in a student’s programs.

Our tool originally used regular expressions to detect style
anomalies, though we recently developed a version that uses a
more symbolic approach.

Figure 4: Style anomalies are styles that depart from the
class requirements or norm, like the late declaration of mn,
or the use of array brackets in myVec[i].

Figure 5: Left-aligned code is a style anomaly, which usually
occurs when a student copy-pastes code from another
source. This figure shows our tool’s auto-detection and
highlighting of the anomaly.

For most style features, by default our tool counts every instance
of a style variation, such as counting every time an untaught
construct like a user-defined function appears. For some features,
the anomaly by default is counted just once no matter how often it
appears, such as varying from normal indenting amount. The
instructor can change that setting for any feature. Furthermore, all
features by default are weighted by 1; the instructor can increase
the weight of any feature. For example, we forbid use of array
brackets in our C++ class (instead requiring use of v.at() notation),
so we weigh the style feature “array brackets” with a higher value
such as 5 instead of 1.

1363

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Frank Vahid, Ashley Pang, & Benjamin Denzler

2.4 Style Inconsistencies

We found a key indicator of cheating is variation in coding style
across the same student’s set of programs. For example, as shown
in Figure 6, a student might in one program have standalone
closing braces before a subsequent else, but in another program
might put closing braces on the same line as the else. As another
example, one program might use 3-space indents, another 4-space
indents, and then another back to 3-space. Normal students don’t
change style like that; such inconsistency is usually indicative of
copying from various online sources whose styles vary, or from an
AI tool which may not always use the same style.

We define about 30 style features per language (Python, Java, C++,
C). For a given student, we analyze their programs and determine
the “majority” style for each feature, e.g., brace on standalone line,
3-space indents, for loop index declared in loop, etc. We refer to
the set of majority style features as the base style. Then, we define
the following metric for each student:

• Style inconsistency count: A count of the number of
style inconsistencies in a student’s programs.

We also define “style inconsistency concern” as a 0-1 metric, like
done for earlier metrics using standard deviations.

Figure 6: Style inconsistencies are unnatural variations in
style across programs for the same student, such as
different brace styles between the above two programs from
the same student. This figure shows our tool’s auto-
detection and highlighting of departures from the student’s
majority style.

2.5 Code Replacement / Initial Copying

If instructors require all development be done in a tool, then the
history of the code can reveal possible cheating. We sometimes see
students whose very first code instance is a nearly-complete
solution, perhaps 100 or more lines of code. In contrast, most

students would start perhaps with 20 lines and then run that code,
then add 10-20 lines and run that code, etc. On a related note,
sometimes students will be working on a solution, cannot get it
functioning correctly, and then suddenly in their code history an
entirely different solution appears. Some students do this multiple
times; we call those “solution hoppers”. We thus define two more
metrics:

• Initial code sizes: The average number of lines of code in
the student’s very first run in their code history for each
program.

• Code replacement count: A count of the number of times
two subsequent code runs are drastically different.

We use a standard text diff to detect code replacements, though
more sophisticated and accurate approaches are surely possible.

We define an “Initial code size concern” metric as normalized to 0
- 1 using the standard deviation approach. Likewise we define a
“code replacement concern” metric similarly.

We are working on detecting actual copy-pastes and using those
to further help detect initial copying or code replacements.

2.6 IP Address

Our system logs IP addresses for each submission. We can analyze
the locations for oddities. For example, sometimes students will
give an external programmer their login credentials. This may lead
to a student’s program coming from overseas. Or, we have seen
nearly-simultaneous submissions from two different IP addresses
for one student, suggesting a student may have somehow divided
their work with a classmate or friend.

We have not yet automated the calculation of an IP address
concern metric. We currently look at IP addresses manually for
already-concerning students. But factors in such a calculation
might include the distance of the IP addresses from the university,
and the variation among IP addresses for a student, especially if
close in time.

2.7 Overall Concern

Instructors can select any set of labs, after which our tool
calculates most of the above metrics. Then, instructors can sort by
any metric, and focus on the highest-concern students.

However, because instructors have limited time, we are interested
in defining an “overall concern” metric, which effectively
combines all the metrics to yield a single 0-1 concern metric value.
Instructors could thus sort by that metric and focus on the highest
concern students.

First, we sort the students by the max across all of that student’s
metric values. Next, we secondary sort by the second largest
metric value, and so on. Note that this equates to concatenating a
student’s metric values into one number, then sorting the digits in
descending order, and finally sorting students based on that
number. For example, if Student A had a 0.7 similarity concern
score and a 0.9 style anomaly score and if we ignore other concern
metrics, Student A’s overall concern would be 0.97. If Student B

1364

Towards Comprehensive Metrics for Programming Cheat Detection SIGCSE 2024, March 20–23, 2024, Portland, OR, USA WOODSTOCK’18, June, 2018, El Paso, Texas USA

has 0.8 similarity and 0.0 style anomaly scores, their overall
concern would be 0.80.

Actually, because individual concern metrics can range from 0 to
1, we shift each metric down by 0.1, with a floor of 0.0, so that
each individual concern metric ranges from 0.0 to 0.9, before we
concatenate them into an overall concern metric.

More powerful approaches are surely possible for determining
overall concern. For example, some approaches might take a more
“intelligent” path through the individual concern metrics. A
student might have high similarity, but if they also have a low
points-rate concern (meaning they are spending a lot of time), and
they have no style anomalies or inconsistencies, we might be less
concerned. Or, if a student has high style anomalies, and their IP
addresses all come from overseas, we might express very high
overall concern.

3 EXPERIENCES USING MULTIPLE METRICS
FOR CHEATING DETECTION

We summarize our experiences using the above metrics for
cheating detection across 3 terms from 2021 - 2023. For student
privacy reasons and under the auspices of our IRB (institutional
review board), we group and summarize cases, and in particular
we do not list specific students nor do we list specific terms, to
reduce chances of sanctioned students detecting themselves in our
writeup.

Across the three terms, we sanctioned 30 students for serious
cheating. Nearly all received Fs, though a few received course
grade reductions (1-2 letter grade deductions). Each term had
about 100 students, so the sanctioning rate was about 30 / 300 =
10%. All sanctioned students eventually admitted to cheating.

The tools have been evolving over the past 2 years. For all three
terms, we had automated points rate, style anomaly, and similarity
concern metrics. We had access to IP addresses. We also had easy
access to entire coding histories, so we could see if a student was
working normally or had initial copies or code replacements in
their history. This access included seeing for a selected student the
latest-highest scored program submitted for every selected lab all
on a single page, so we could quickly scroll and see all the labs
submitted by that selected student. In the latest term, an overall
concern metric was made available, and an automated style
inconsistency tool was developed.

We found ourselves making heavy use of three metrics -- points
rate, style anomaly, and similarity -- to find students of concern.
Our weekly routine evolved towards selecting all labs from the
past 2-3 weeks (totaling 10-15 labs), running tools, and then:

• First, we’d sort by the points rate concern metric to find
students getting high scores but spending little time
relative to classmates. Typically about 5 students in our
class of 100 would have points rate concern values above
0.7. For each, we would scroll through the “all labs on a
single page” view to visually detect style anomalies or
style inconsistencies. If none, we’d quickly look at code

history for a few labs, and if development looked
normal, we’d assume the student was just a fast
programmer. If detected, we’d look a bit more at code
history, look at the similarity reports, and decide
whether to contact the student about possible cheating.

• Second, we’d sort by the style anomaly concern metric
to find students with code departing from class style.
That list was typically about 5-10 students having
concern values over 0.7. For each, we’d scroll through
the “all labs on a single page” view for inconsistency in
style.

• Third, we’d look at the similarity data showing orange
and red flagged students, to look for cases of repeated
copying among classmates.

For suspicious cases after the above investigation, we would
always first reach out to students asking about their labs, without
accusing them of cheating, and invite a conversation either via
email or a Zoom call. In general, we found:

• Style anomalies were the “smoking gun” in a majority of
cases, yielding very compelling evidence of cheating.
Code would have advanced techniques, like pointers,
infinite loops with breaks, user-defined functions (before
we taught that), range-based for loops, etc. Upon
conversing with the student, they would often have no
understanding of those techniques. But in a few cases,
they had prior experience and could easily explain their
used techniques.

• Style inconsistency was the second most compelling
evidence of cheating. Students usually could not justify
why they would substantially change their style from
one lab to another. We cannot recall any justified cases
of such inconsistency; it was always due to copying
from different sources or from AI being inconsistent.

Style anomalies or inconsistencies were the main factors in about
2/3 of all our sanctioned cases. The most common sources that
students described during our discussions were Chegg, Quizlet,
Coursehero, GitHub, Stack Overflow, and more, though often
students just googled for solutions without remembering which
site returned a hit. Somewhat amusingly, sometimes students
would copy-paste a solution in the wrong language, and other
times the code they pasted would include the surrounding items
on the website like the request for a solution or thanking the
solution provider. In the most recent term, copying from ChatGPT
was also a commonly-stated source by students.

About a half dozen of the students admitted to having another
person program for them. Some hired contractors online, and paid
them for solutions -- typical rates were about $30-$50 per solution.
Some had family or friends doing their programming for them. In
some cases, the IP addresses provided compelling evidence, where
students gave their login credentials to someone else, causing their
submissions to be coming from overseas, or from two places at
once.

We also found similarity was compelling evidence in about 1/3 of
cases. Usually, similarity was due to one student providing

1365

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Frank Vahid, Ashley Pang, & Benjamin Denzler

excessive help to a classmate. We would see one student’s code
history clearly showing hard work, and another student showing
little work and usually scoring high on the points rate concern
metric. We could also see from timestamps who was completing
the work first. In discussions, one student would often say they
felt bad for their friend and just wanted to help. Sometimes they
would share code with the classmate but ask them not to copy it,
but then the classmate would get desperate and copy.

Sometimes, similarity was due to independent copying from the
same online source. Some students would have identical code but
not know each other, due to both copying from Chegg. On some
occasions, an online contractor would be paid by two students
independently, and just give them both the same code. And, we
found that ChatGPT sometimes generates the same code for
different students too. In all these cases, there were usually also
style anomalies or inconsistencies, so the similarity was just
further evidence of cheating.

Points rate concern was helpful in detecting potential cases,
though itself was not “evidence” of cheating.

We typically spent about 1-2 hours per week detecting,
investigating, and reporting cheating. Some weeks we spent none,
other weeks 2-4 hours. The tools did most of the hard work of
detecting suspicious cases. For a week’s suspicious cases, we’d
spend about an hour total doing the manual investigations of the
5-10 highlighted students. The most time-consuming task was the
discussions with students, especially when using Zoom meetings
vs email, which we greatly prefer over emails because we can not
only progress more quickly towards “clear cheating” or “the
student is actually programming”, but also because we find it is
better for the student since we are respectful and reassuring and
thus can help reduce their worry and stress (of which there can be
a lot).

4 DISCUSSION
The comprehensive metrics approach has substantially changed
our cheating detection efforts.

• Detection previously was based entirely on similarity for
a single lab. We can now detect a much broader range of
cheating.

• With detailed logs in recent years, detection was a
cumbersome manual process. Today, the
aforementioned tools make finding suspicious cases
almost trivial, just running the tools (which takes < 1
minute) and then sorting by a concern metric, followed
by a bit of clicking to examine student code.

• Every student in those three terms eventually admitted
to cheating, as the evidence became overwhelming. The
students would realize they could not explain their style
anomalies or inconsistencies, justify having identical
code to an unknown classmate, or explain why all their
code is coming from another country. Most students
would initially try to justify such things, but as we
would show more evidence, they would say “Ok, ya, I
copied from Chegg” or “Well, OK, I admit I used

ChatGPT, I was just desperate”, etc. Previously, with
similarity checking alone, students would often not
admit, instead sticking with “We just discussed the
program together” or “I looked at his code but I didn’t
copy-paste it”.

• Since using the more comprehensive metrics, not a
single case has been contested or overruled after being
referred to student conduct. The evidence is likely just
too overwhelming. In the past, students would
sometimes contest the cases, and on occasion the
student conduct panels would say that the evidence
wasn’t sufficiently conclusive that cheating occurred.
We have not experienced that in over two years now.

While zyBooks provides a beta tool, we are developing our own
scripts that simply take log files as input and generate similar
metric values. Other platforms can also be used, but they may
capture different metrics which may yield different results.

Ultimately, our goal is not to punish cheating but rather to prevent
cheating. A strong deterrent helps, reducing “opportunity” per the
fraud triangle [1]. As such, we show students some of our tools --
in a friendly way, like “Let’s see how much time folks spent
programming last week”, or “Let’s see if anyone came up with
similar solutions on the quiz problem”, pulling up the tools in
anonymous mode. We also address the other two parts of the
triangle, aiming to reduce “pressure” via heavily scaffolded
learning and second-chance policies, and aiming to reduce
“rationalization” via establishing rapport, having reasonable
policies, discussing moral/ethical issues with students, and
motivating why learning programming is useful.

5 CONCLUSIONS
The more comprehensive set of cheating concern metrics
described in this paper have: (1) Assisted us in detecting cheating
cases that would have gone unnoticed just considering similarity,
(2) Helped provide stronger cases for cheating referrals, while also
exonerating students who might have otherwise been referred
based just on similarity, (3) Saved hours of instructor time per
week by auto-highlighting the most egregious cases across a set of
programs. We have especially found that the style anomaly and
the style inconsistency metrics have become our preferred metrics,
often providing “smoking gun” evidence, sometimes in
conjunction with similarity, and other times when similarity
doesn’t even apply. As such, we encourage the CS community to
integrate such techniques into their cheat detection approaches.
More generally, we believe strong cheat detection can provide a
deterrent to cheating, as part of a multi-faceted approach to
reducing cheating that might include moral/ethical aspects,
increased/improved proctored assessments, and more.

ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant Nos. 2111323 and 2313793.

1366

Towards Comprehensive Metrics for Programming Cheat Detection SIGCSE 2024, March 20–23, 2024, Portland, OR, USA WOODSTOCK’18, June, 2018, El Paso, Texas USA

REFERENCES
[1] Albluwi, I., 2019. Plagiarism in programming assessments: a systematic review.

ACM Transactions on Computing Education (TOCE), 20(1), pp.1-28.
[2] Schleimer S, Wilkerson, DS, Aiken A. Winnowing: local algorithms for document

fingerprinting. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data (pp. 76-85).

[3] Software plagiarism detector, https://jplag.ipd.kit.edu/, accessed 2022.
[4] Prechelt, L., Malpohl, G. and Philippsen, M. Finding plagiarisms among a set of

programs with JPlag. Journal UCS, 8(11), 2002.
[5] Lisa Yan, Nick McKeown, Mehran Sahami, and Chris Piech. 2018. TMOSS: Using

Intermediate Assignment Work to Understand Excessive Collaboration in Large
Classes. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (SIGCSE ‘18). Association for Computing Machinery, New
York, NY, USA (pp. 110–115).

[6] Allen, J.M., Vahid, F., Downey, K. and Edgcomb, A.D., 2018, June. Weekly
programs in a CS1 class: Experiences with auto-graded many-small programs
(MSP). In 2018 ASEE Annual Conference & Exposition.

[7] Pang, A., & Vahid, F. (2023, June). Variability-Inducing Requirements for
Programs: Increasing Solution Variability for Similarity Checking. In Proceedings
of the 2023 Conference on Innovation and Technology in Computer Science
Education V. 1 (pp. 430-435).

[8] Ericson, B.J. and Miller, B.N., 2020, February. Runestone: A Platform for Free, On-
line, and Interactive Ebooks. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education (pp. 1012-1018).

[9] Hagan, D. and Markham, S., 2000, December. Teaching Java with the BlueJ
environment. In Proceedings of Australasian Society for Computers in Learning
in Tertiary Education Conference ASCILITE.

[10] Tahaei, N. and Noelle, D.C., 2018, August. Automated plagiarism detection for
computer programming exercises based on patterns of resubmission. In
Proceedings of the 2018 ACM Conference on International Computing Education
Research (pp. 178-186).

[11] Alzahrani, N., & Vahid, F. (2022, August). Detecting Possible Cheating In
Programming Courses Using Drastic Code Change. In 2022 ASEE Annual
Conference & Exposition.

[12] Gordon, C.L., Lysecky, R. and Vahid, F., 2021, July. The rise of program auto-
grading in introductory cs courses: A case study of zylabs. In 2021 ASEE Virtual
Annual Conference Content Access.

[13] https://www.gradescope.com/, accessed Aug 2023.
[14] https://www.vocareum.com/, accessed Aug 2023.
[15] www.zybooks.com, access Aug 2023 (https://www.zybooks.com/catalog/zylabs-

programming/).
[16] https://www.codio.com/, accessed Aug 2023.

1367

