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ABSTRACT 

Automated assistance for detecting cheating on programs has long 
been investigated by CS educators, especially with the rise of 
“homework help” websites over the past decade, and recently with 
AI tools like ChatGPT. The main detection approach has long been 
flagging similar submission pairs. Modern cheating, like hiring 
contractors or using ChatGPT, may not yield such similarity. And, 
cases based on similarity alone may be weak. Thus, over the past 
several years, building on logs from an online program auto-
grader (zyBooks), we developed additional “cheating concern 
metrics”: points rate, style anomalies, style inconsistencies, IP 
address anomalies, code replacements, and initial copying. Most 
are defined not only for one programming assignment but also 
across a set of assignments. The metrics can help catch more kinds 
of cheating, provide more compelling evidence of cheating, reduce 
false cheating accusations based on similarity alone, and help 
instructors focus their limited cheat-detection time on the most 
egregious cases. We describe the techniques, and our experiences 
(via our own Python scripts and a commercial tool) for several 
terms, showing benefits of having more metrics than just 
similarity. Of 30 cheating cases over 3 terms and 300 students, 
most were based on metrics beyond similarity, all students 
admitted, none later contested, and time per student was only 1-2 
hours (far less than previously). Our goal is to prevent cheating in 
the first place, by reducing opportunity via strong detection tools, 
as part of a multi-faceted approach to having students truly learn 
and stay out of trouble. 
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1 INTRODUCTION 

Cheating is a serious problem in programming courses [1]. Most 
cheating detection focuses on similarity checking [2, 3, 4, 5], which 
has detected much cheating over the years. However, similarity 
checking is known to have false positives, such as for small 
programs, yet a “many small programs” approach is popular 
especially in CS1 [6]. It can also have false positives when not 
much logical variation exists in possible solutions, even for larger 
programs. Pang [7] suggests introducing variability-inducing 
requirements to increase solution variability, but of course the 
approach is limited and does make the programs a bit harder for 
students. Other researchers have proposed complementary cheat 
detection techniques. For example, as some platforms record code 
history, some propose examining history for normal incremental 
development versus copying [8, 9]. Tahaei [10] proposed 
examining code history for cases where a student’s code history 
shows one program being entirely replaced by another program, 
which is a common sign of copying. Similarly, Alzahrani [11] 
developed a tool to detect “drastic change” in code history. Drastic 
changes could be students copying a solution immediately, 
hopping between found solutions, or giving up on their attempts 
and pasting an online solution.  

We switched to the zyBooks program auto-grader several years 
ago, which appears to be one of the most widely used program 
auto-graders in the U.S. [12]. zyBooks provides an IDE that records 
data on every program a student runs, including date, time, IP 
address, the code itself, test case results, score, and more. We 
naturally began using this log data to assist in our cheat detection 
efforts beyond similarity detection alone, writing scripts to 
measure time spent, detect code replacements, detect unusual 
constructs often found in contractor-written solutions, etc. These 
scripts are being developed as part of an NSF-funded project and 
the plan is to make them available to instructors in the near future. 
We also began using a beta tool from zyBooks itself that has begun 
incorporating such metrics. In this paper, we report our 
experiences developing and using this more comprehensive set of 
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cheat-detection metrics to detect cheating in our CS1 class at a 
large public university. We believe such tools will eventually 
become commonplace in more CS courses, to detect more kinds of 
cheating, and hopefully as a strong deterrent that prevents such 
cheating, akin to how nobody speeds right past a police officer. 
Deterrents of course are just one part of a more comprehensive 
approach to keeping students focused on learning. 

2 CHEATING CONCERN METRICS 

2.1 Similarity 

Similarity highlighting is the most common form of cheat 
detection. Some similarity checking tools are standalone like 
MOSS [2] and Jplag [3]. Most program autograders come with 
built-in similarity checking [13, 14, 15, 16]. With most similarity 
checkers from those autograders or in research tools [2, 3, 4, 5], for 
a given programming assignment (what we will call a “lab”), 
instructors are provided a sorted list of highly-similar program 
pairs (or a group) as seen in Figure 1. 

 

Figure 1: List of highly-similar program pairs sorted by 
similarity concern. Each row is a student (names 
intentionally omitted). 

 

Figure 2: Most similarity checkers will highlight the code 
that is deemed similar across a pair of programs. 

For a given pair, the similar code is highlighted, as in Figure 2. 
Similarity checkers typically ignore insignificant variations, like 
variable names, whitespace, comments, and even some statement 
ordering. With our tool, we have found that having 90% or higher 
similarity is suggestive of cheating, at least for labs with expected 
variation in solutions. 

Most similarity checkers focus on one lab. Running a checker on 
every lab, and investigating similar pairs, can be cumbersome, 

especially if students are given multiple labs per week. Thus, in 
practice, many instructors run similarity checking on a few labs, 
such as one selected lab per week, or one from every few weeks.  

Instructors are often interested in focusing their limited cheat-
checking time on the most egregious cheaters. As such, we built a 
higher-level of similarity concern on top of a MOSS-like similarity 
checker. Given a set of labs, the technique runs the similarity 
checker on each lab, and for each student it counts the number of 
labs for which the student has a 90% or higher similarity with at 
least one other student. Because not all labs have much solution 
variability, we exclude low-variability labs where more than half 
the students have 90% or more similarity with at least one other 
student. We find low-variability labs with the assumption that the 
majority of the class isn’t cheating (which could in some cases not 
be true of course). The remaining labs are “high variability” labs 
where 90% similarity is more likely to suggest cheating. We define 
the following metrics for each student:  

• Similarity average: The average of the highest similarity 
score per lab for this student across all high-variability 
labs.  

• Similar labs count: The number of high-variability labs 
where the student has 90% or higher similarity with at 
least one other student. Low-variability labs are ignored. 

For every metric, we desire to have a “normalized” score that 
suggests to instructors the likelihood of the metric value indicating 
cheating. A score of 1 should almost certainly mean cheating (but 
never for sure -- instructors must always investigate), 0 means no 
evidence of cheating, and 0.5 is a border above which instructors 
might wish to investigate. We thus provide the following 
normalized similarity metric:  

• Similarity concern: We map similarity average to the 
range 0 to 1 using standard deviations, with 0.5 being 1 
standard deviation above the class average, and 1 being 
2 standard deviations above. (Those standard deviation 
values could be adjusted).  

This is just one approach to mapping, which has worked well for 
us. Other more rigorously-determined approaches are possible and 
a subject for future investigation.  

We also track which other students appeared as highly-similar to 
the current student for each counted lab. If another student 
appears in half or more of the counted labs, their name appears in 
a “potential collaborator” list with an orange flag. If the other 
student appears in 2/3, we red flag them as a “very likely 
collaborator”. 

2.2 Points Rate Concern 

If an instructor requires all development be in a tool that records 
develop time and run information, then those values can help 
detect cheating: Students with unusually low time or runs, yet 
high scores, might be copying from external sources (of course, 
they might just be proficient programmers). Thus, we provide 
some development metrics to instructors, as shown in Figure 3. 
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 Figure 3: Student roster showing time and points metrics. 
Each row is a student (names intentionally omitted). 

Relevant metrics include the time each student spent, and the 
number of times the student ran their code. Students with low 
time (or runs) but high scores are suspect. As such, we define the 
following normalized metric:  

• Points-rate concern: We calculate the ratio of TotalScore 
/ TotalTime for each student. Those scores are mapped 
to 0 to 1 such that 1 standard deviation above the class 
average yields 0.5, and 2 standard deviations yields 1. 

Again, the standard deviation values could be adjusted; we have 
found the above work well. We note that the standard deviation 
approach assumes a class with sufficient students doing the labs, 
such as perhaps 25 or more students. For smaller classes, another 
mapping approach might be needed. 

2.3 Style Anomalies 

Most instructors have their class follow a particular “coding style”, 
usually (but not always) following their textbook’s style. Being 
required to follow a coding style is common in industry too. 
Example style features include:  

• Variable naming (camelCase, under_score, etc.) 
• Brace style (opening brace on the same line or next line) 
• Variable declaration rules (at top or spread out, 

initialized or not, multiple per line or not, etc.) 
• Constructs taught (user-defined functions or not, 

conditional operators or not, etc.) 
• Indent amount (2 space, 3 space, 4 space, etc.) 
• Use of while (true) loops and break (common with AI) 

Typically dozens of such style features exist.  

When students copy code from online sources, have an external 
person program for them (friend, contractor), or let AI program for 
them, often those programs’ style departs from the class style. We 
call those “style anomalies”. 

Figure 4 shows code with several style anomalies from our class’ 
style: late declarations, short variable names, initialized 
declarations, calling of an untaught “min” function, no blank lines, 
and more. Figure 5 shows some code that is left-aligned, usually 
resulting from a copy-paste of code from another source.  

Our technique defines about 20 style features (a unique set of ~20 
for each of Python, Java, C++, and C), with defaults set to a 
common style but configurable by an instructor. Then, we define 
the following metric:  

• Style anomaly count: A count of the number of style 
anomalies found in a student’s programs. 

Our tool originally used regular expressions to detect style 
anomalies, though we recently developed a version that uses a 
more symbolic approach.  

 
Figure 4: Style anomalies are styles that depart from the 
class requirements or norm, like the late declaration of mn, 
or the use of array brackets in myVec[i]. 

 
Figure 5: Left-aligned code is a style anomaly, which usually 
occurs when a student copy-pastes code from another 
source. This figure shows our tool’s auto-detection and 
highlighting of the anomaly. 

For most style features, by default our tool counts every instance 
of a style variation, such as counting every time an untaught 
construct like a user-defined function appears. For some features, 
the anomaly by default is counted just once no matter how often it 
appears, such as varying from normal indenting amount. The 
instructor can change that setting for any feature. Furthermore, all 
features by default are weighted by 1; the instructor can increase 
the weight of any feature. For example, we forbid use of array 
brackets in our C++ class (instead requiring use of v.at() notation), 
so we weigh the style feature “array brackets” with a higher value 
such as 5 instead of 1. 
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2.4 Style Inconsistencies 

We found a key indicator of cheating is variation in coding style 
across the same student’s set of programs. For example, as shown 
in Figure 6, a student might in one program have standalone 
closing braces before a subsequent else, but in another program 
might put closing braces on the same line as the else. As another 
example, one program might use 3-space indents, another 4-space 
indents, and then another back to 3-space. Normal students don’t 
change style like that; such inconsistency is usually indicative of 
copying from various online sources whose styles vary, or from an 
AI tool which may not always use the same style.  

We define about 30 style features per language (Python, Java, C++, 
C). For a given student, we analyze their programs and determine 
the “majority” style for each feature, e.g., brace on standalone line, 
3-space indents, for loop index declared in loop, etc. We refer to 
the set of majority style features as the base style. Then, we define 
the following metric for each student: 

• Style inconsistency count: A count of the number of 
style inconsistencies in a student’s programs.  

We also define “style inconsistency concern” as a 0-1 metric, like 
done for earlier metrics using standard deviations.  

 
Figure 6: Style inconsistencies are unnatural variations in 
style across programs for the same student, such as 
different brace styles between the above two programs from 
the same student. This figure shows our tool’s auto-
detection and highlighting of departures from the student’s 
majority style.  

2.5 Code Replacement / Initial Copying 

If instructors require all development be done in a tool, then the 
history of the code can reveal possible cheating. We sometimes see 
students whose very first code instance is a nearly-complete 
solution, perhaps 100 or more lines of code. In contrast, most 

students would start perhaps with 20 lines and then run that code, 
then add 10-20 lines and run that code, etc. On a related note, 
sometimes students will be working on a solution, cannot get it 
functioning correctly, and then suddenly in their code history an 
entirely different solution appears. Some students do this multiple 
times; we call those “solution hoppers”. We thus define two more 
metrics:  

• Initial code sizes: The average number of lines of code in 
the student’s very first run in their code history for each 
program. 

• Code replacement count: A count of the number of times 
two subsequent code runs are drastically different.  

We use a standard text diff to detect code replacements, though 
more sophisticated and accurate approaches are surely possible.  

We define an “Initial code size concern” metric as normalized to 0 
- 1 using the standard deviation approach. Likewise we define a 
“code replacement concern” metric similarly.  

We are working on detecting actual copy-pastes and using those 
to further help detect initial copying or code replacements.  

2.6 IP Address 

Our system logs IP addresses for each submission. We can analyze 
the locations for oddities. For example, sometimes students will 
give an external programmer their login credentials. This may lead 
to a student’s program coming from overseas. Or, we have seen 
nearly-simultaneous submissions from two different IP addresses 
for one student, suggesting a student may have somehow divided 
their work with a classmate or friend.  

We have not yet automated the calculation of an IP address 
concern metric. We currently look at IP addresses manually for 
already-concerning students. But factors in such a calculation 
might include the distance of the IP addresses from the university, 
and the variation among IP addresses for a student, especially if 
close in time. 

2.7 Overall Concern 

Instructors can select any set of labs, after which our tool 
calculates most of the above metrics. Then, instructors can sort by 
any metric, and focus on the highest-concern students.  

However, because instructors have limited time, we are interested 
in defining an “overall concern” metric, which effectively 
combines all the metrics to yield a single 0-1 concern metric value. 
Instructors could thus sort by that metric and focus on the highest 
concern students.  

First, we sort the students by the max across all of that student’s 
metric values. Next, we secondary sort by the second largest 
metric value, and so on. Note that this equates to concatenating a 
student’s metric values into one number, then sorting the digits in 
descending order, and finally sorting students based on that 
number. For example, if Student A had a 0.7 similarity concern 
score and a 0.9 style anomaly score and if we ignore other concern 
metrics, Student A’s overall concern would be 0.97. If Student B 

1364



Towards Comprehensive Metrics for Programming Cheat Detection SIGCSE 2024, March 20–23, 2024, Portland, OR, USA WOODSTOCK’18, June, 2018, El Paso, Texas USA 
 

 

has 0.8 similarity and 0.0 style anomaly scores, their overall 
concern would be 0.80. 

Actually, because individual concern metrics can range from 0 to 
1, we shift each metric down by 0.1, with a floor of 0.0, so that 
each individual concern metric ranges from 0.0 to 0.9, before we 
concatenate them into an overall concern metric.  

More powerful approaches are surely possible for determining 
overall concern. For example, some approaches might take a more 
“intelligent” path through the individual concern metrics. A 
student might have high similarity, but if they also have a low 
points-rate concern (meaning they are spending a lot of time), and 
they have no style anomalies or inconsistencies, we might be less 
concerned. Or, if a student has high style anomalies, and their IP 
addresses all come from overseas, we might express very high 
overall concern. 

3 EXPERIENCES USING MULTIPLE METRICS 
FOR CHEATING DETECTION 

We summarize our experiences using the above metrics for 
cheating detection across 3 terms from 2021 - 2023. For student 
privacy reasons and under the auspices of our IRB (institutional 
review board), we group and summarize cases, and in particular 
we do not list specific students nor do we list specific terms, to 
reduce chances of sanctioned students detecting themselves in our 
writeup.  

Across the three terms, we sanctioned 30 students for serious 
cheating. Nearly all received Fs, though a few received course 
grade reductions (1-2 letter grade deductions). Each term had 
about 100 students, so the sanctioning rate was about 30 / 300 = 
10%. All sanctioned students eventually admitted to cheating.  

The tools have been evolving over the past 2 years. For all three 
terms, we had automated points rate, style anomaly, and similarity 
concern metrics. We had access to IP addresses. We also had easy 
access to entire coding histories, so we could see if a student was 
working normally or had initial copies or code replacements in 
their history. This access included seeing for a selected student the 
latest-highest scored program submitted for every selected lab all 
on a single page, so we could quickly scroll and see all the labs 
submitted by that selected student. In the latest term, an overall 
concern metric was made available, and an automated style 
inconsistency tool was developed.  

We found ourselves making heavy use of three metrics -- points 
rate, style anomaly, and similarity -- to find students of concern. 
Our weekly routine evolved towards selecting all labs from the 
past 2-3 weeks (totaling 10-15 labs), running tools, and then:  

• First, we’d sort by the points rate concern metric to find 
students getting high scores but spending little time 
relative to classmates. Typically about 5 students in our 
class of 100 would have points rate concern values above 
0.7. For each, we would scroll through the “all labs on a 
single page” view to visually detect style anomalies or 
style inconsistencies. If none, we’d quickly look at code 

history for a few labs, and if development looked 
normal, we’d assume the student was just a fast 
programmer. If detected, we’d look a bit more at code 
history, look at the similarity reports, and decide 
whether to contact the student about possible cheating.  

• Second, we’d sort by the style anomaly concern metric 
to find students with code departing from class style. 
That list was typically about 5-10 students having 
concern values over 0.7. For each, we’d scroll through 
the “all labs on a single page” view for inconsistency in 
style. 

• Third, we’d look at the similarity data showing orange 
and red flagged students, to look for cases of repeated 
copying among classmates.  

For suspicious cases after the above investigation, we would 
always first reach out to students asking about their labs, without 
accusing them of cheating, and invite a conversation either via 
email or a Zoom call. In general, we found:  

• Style anomalies were the “smoking gun” in a majority of 
cases, yielding very compelling evidence of cheating. 
Code would have advanced techniques, like pointers, 
infinite loops with breaks, user-defined functions (before 
we taught that), range-based for loops, etc. Upon 
conversing with the student, they would often have no 
understanding of those techniques. But in a few cases, 
they had prior experience and could easily explain their 
used techniques.  

• Style inconsistency was the second most compelling 
evidence of cheating. Students usually could not justify 
why they would substantially change their style from 
one lab to another. We cannot recall any justified cases 
of such inconsistency; it was always due to copying 
from different sources or from AI being inconsistent.  

Style anomalies or inconsistencies were the main factors in about 
2/3 of all our sanctioned cases. The most common sources that 
students described during our discussions were Chegg, Quizlet, 
Coursehero, GitHub, Stack Overflow, and more, though often 
students just googled for solutions without remembering which 
site returned a hit. Somewhat amusingly, sometimes students 
would copy-paste a solution in the wrong language, and other 
times the code they pasted would include the surrounding items 
on the website like the request for a solution or thanking the 
solution provider. In the most recent term, copying from ChatGPT 
was also a commonly-stated source by students.  

About a half dozen of the students admitted to having another 
person program for them. Some hired contractors online, and paid 
them for solutions -- typical rates were about $30-$50 per solution. 
Some had family or friends doing their programming for them. In 
some cases, the IP addresses provided compelling evidence, where 
students gave their login credentials to someone else, causing their 
submissions to be coming from overseas, or from two places at 
once.  

We also found similarity was compelling evidence in about 1/3 of 
cases. Usually, similarity was due to one student providing 

1365



SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Frank Vahid, Ashley Pang, & Benjamin Denzler 
 

 

 

excessive help to a classmate. We would see one student’s code 
history clearly showing hard work, and another student showing 
little work and usually scoring high on the points rate concern 
metric. We could also see from timestamps who was completing 
the work first. In discussions, one student would often say they 
felt bad for their friend and just wanted to help. Sometimes they 
would share code with the classmate but ask them not to copy it, 
but then the classmate would get desperate and copy.  

Sometimes, similarity was due to independent copying from the 
same online source. Some students would have identical code but 
not know each other, due to both copying from Chegg. On some 
occasions, an online contractor would be paid by two students 
independently, and just give them both the same code. And, we 
found that ChatGPT sometimes generates the same code for 
different students too. In all these cases, there were usually also 
style anomalies or inconsistencies, so the similarity was just 
further evidence of cheating.  

Points rate concern was helpful in detecting potential cases, 
though itself was not “evidence” of cheating.  

We typically spent about 1-2 hours per week detecting, 
investigating, and reporting cheating. Some weeks we spent none, 
other weeks 2-4 hours. The tools did most of the hard work of 
detecting suspicious cases. For a week’s suspicious cases, we’d 
spend about an hour total doing the manual investigations of the 
5-10 highlighted students. The most time-consuming task was the 
discussions with students, especially when using Zoom meetings 
vs email, which we greatly prefer over emails because we can not 
only progress more quickly towards “clear cheating” or “the 
student is actually programming”, but also because we find it is 
better for the student since we are respectful and reassuring and 
thus can help reduce their worry and stress (of which there can be 
a lot). 

4 DISCUSSION 
The comprehensive metrics approach has substantially changed 
our cheating detection efforts.  

• Detection previously was based entirely on similarity for 
a single lab. We can now detect a much broader range of 
cheating. 

• With detailed logs in recent years, detection was a 
cumbersome manual process. Today, the 
aforementioned tools make finding suspicious cases 
almost trivial, just running the tools (which takes < 1 
minute) and then sorting by a concern metric, followed 
by a bit of clicking to examine student code.  

• Every student in those three terms eventually admitted 
to cheating, as the evidence became overwhelming. The 
students would realize they could not explain their style 
anomalies or inconsistencies, justify having identical 
code to an unknown classmate, or explain why all their 
code is coming from another country. Most students 
would initially try to justify such things, but as we 
would show more evidence, they would say “Ok, ya, I 
copied from Chegg” or “Well, OK, I admit I used 

ChatGPT, I was just desperate”, etc. Previously, with 
similarity checking alone, students would often not 
admit, instead sticking with “We just discussed the 
program together” or “I looked at his code but I didn’t 
copy-paste it”.  

• Since using the more comprehensive metrics, not a 
single case has been contested or overruled after being 
referred to student conduct. The evidence is likely just 
too overwhelming. In the past, students would 
sometimes contest the cases, and on occasion the 
student conduct panels would say that the evidence 
wasn’t sufficiently conclusive that cheating occurred. 
We have not experienced that in over two years now.  

While zyBooks provides a beta tool, we are developing our own 
scripts that simply take log files as input and generate similar 
metric values. Other platforms can also be used, but they may 
capture different metrics which may yield different results. 

Ultimately, our goal is not to punish cheating but rather to prevent 
cheating. A strong deterrent helps, reducing “opportunity” per the 
fraud triangle [1]. As such, we show students some of our tools -- 
in a friendly way, like “Let’s see how much time folks spent 
programming last week”, or “Let’s see if anyone came up with 
similar solutions on the quiz problem”, pulling up the tools in 
anonymous mode. We also address the other two parts of the 
triangle, aiming to reduce “pressure” via heavily scaffolded 
learning and second-chance policies, and aiming to reduce 
“rationalization” via establishing rapport, having reasonable 
policies, discussing moral/ethical issues with students, and 
motivating why learning programming is useful.  

5 CONCLUSIONS 
The more comprehensive set of cheating concern metrics 
described in this paper have: (1) Assisted us in detecting cheating 
cases that would have gone unnoticed just considering similarity, 
(2) Helped provide stronger cases for cheating referrals, while also 
exonerating students who might have otherwise been referred 
based just on similarity, (3) Saved hours of instructor time per 
week by auto-highlighting the most egregious cases across a set of 
programs. We have especially found that the style anomaly and 
the style inconsistency metrics have become our preferred metrics, 
often providing “smoking gun” evidence, sometimes in 
conjunction with similarity, and other times when similarity 
doesn’t even apply. As such, we encourage the CS community to 
integrate such techniques into their cheat detection approaches. 
More generally, we believe strong cheat detection can provide a 
deterrent to cheating, as part of a multi-faceted approach to 
reducing cheating that might include moral/ethical aspects, 
increased/improved proctored assessments, and more. 
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