
Paper ID #33488

Randomized, Structured, Auto-graded Homework: Design Philosophy and
Engineering Examples

Ms. Efthymia Kazakou, zyBooks, A Wiley Brand

Efthymia Kazakou is Sr. Assessments manager at zyBooks, a startup spun-off from UC Riverside and
acquired by Wiley. zyBooks develops interactive, web-native learning materials for STEM courses.
Efthymia oversees the development and maintenance of all zyBooks content resources used for assess-
ment purposes.

Dr. Alex Daniel Edgcomb, zyBooks, A Wiley Brand

Alex Edgcomb is Sr. Software Engineer at zyBooks, a startup spun-off from UC Riverside and acquired
by Wiley. zyBooks develops interactive, web-native learning materials for STEM courses. Alex actively
studies and publishes the efficacy of web-native learning materials on student outcomes.

Dr. Yamuna Rajasekhar, zyBooks, A Wiley Brand

Yamuna Rajasekhar received her Ph.D. in Electrical Engineering from the UNC Charlotte. She served as
a faculty member at Miami University where her research was focused on assistive technology, embedded
systems, and engineering education. She is currently a Senior Content Developer at zyBooks, a startup
that develops highly-interactive, web-native textbooks for a variety of STEM disciplines.

Prof. Roman Lysecky, University of Arizona; zyBooks, A Wiley Brand

Roman Lysecky is VP of Content at zyBooks, A Wiley Brand and a Professor of Electrical and Computer
Engineering at the University of Arizona. He received his Ph.D. in Computer Science from the University
of California, Riverside in 2005. His research focuses on embedded systems, cybersecurity, and STEM
education. He has authored more than 100 research publications, received nine Best Paper Awards, is an
inventor on multiple patents, and received multiple awards for Excellence at the Student Interface.

Prof. Frank Vahid, University of California, Riverside

Frank Vahid is a Professor of Computer Science and Engineering at the Univ. of California, Riverside.
His research interests include embedded systems design, and engineering education. He is a co-founder
of zyBooks.com.

c©American Society for Engineering Education, 2021

Randomized, Structured, Auto-graded Homeworks: Design Philosophy and
Engineering Examples

Abstract

Engineering homeworks encourage students to practice skills and apply concepts. Such
homeworks are critical to a student's learning of course content and performance on high-stakes
exams. Research has examined approaches to improve effectiveness of homeworks, including
auto-grading for faster feedback and adaptivity to personalize a student's learning. Over the last 8
years, we have developed a homework activity framework that has been applied to multiple
engineering and math disciplines with wide-spread adoptions: 600,000 students across 800
universities have submitted 90 million times. Our homework activities are integrated into
web-based interactive textbooks. Such a homework activity is a sequence of progressively more
difficult levels. A student must complete the first level's question to move on to the second
level's question, and so on. Each level contains numerous same-difficulty questions, one of
which is randomly selected when the student arrives at a level. A student's submission is
auto-graded, and the student receives specific and immediate feedback to the given question and
their submission. If the student answered incorrectly, then the student can try again on a new
randomly-generated question of the same difficulty. Our homework activity philosophy is: (1)
randomized -- each question is randomly generated to enable students plenty of practice and
enable instructors to reuse the activity for an exam, (2) structured -- an activity is a sequence of
incrementally harder questions so a student can demonstrate mastery, (3) auto-graded -- a
student's submission is immediately assessed and the student is provided relevant feedback. This
paper describes our homework activity philosophy, including pedagogical considerations made
in designing such activities, many examples across different subjects, and reasons for
implementing such a homework activity. Student submission data shows that on average across
all the subjects discussed in this paper, an average of 98.4% of students were able to successfully
complete an attempted level.

1. Introduction

Homework is a crucial aspect of an engineering course. Homework not only provides the
students with the ability to practice, but also serves as a tool for instructors to assess their
students' understanding of concepts taught in class. Traditionally, engineering homework is
assigned by the instructor, and students complete the work, on paper or in a word processor, that
the instructor then grades manually. Manual grading is time consuming for the instructor, can
lead to human errors in the grading, adds delay until students receive feedback, and is
one-direction communication. Also, the number of questions in the homework tends to be
limited, so a student has a limited amount of practice. Further, the limited number of questions
may increase the scope for academic dishonesty.

Various approaches have attempted to address the issues with traditional engineering homework.
One approach is to auto-grade homework, of which numerous commercial and university
solutions exist [1] [2]. Another approach adds auto-grading and randomly-generating homework
questions [3]. Such approaches tend to be limited to numerical questions and do not support
adaptivity. A third approach is for the homework to adapt to each student's ability and provide
additional questions to help the student approach mastery [4] [5].

This paper presents an online homework activity framework that provides immediate,
meaningful feedback to the students. The feedback describes what is wrong with the students'
answers, and offers a step-by-step solution to the question presented. Each homework consists of
a sequence of levels that have questions of increasing difficulty. Within each level, the
homework activity uses randomization to enable students to be presented with a new question
upon entering the wrong answer. In addition to this, the randomizations provide the students with
the capability to practice more questions independently, especially in preparation for midterms or
final exams.

This style of homework activity was developed at zyBooks in their online web-based interactive
textbooks, which mainly target lower-division engineering and computer science courses [6]. In
earlier papers, student usage of this homework activity framework was analyzed for digital
design [7] and circuits [8] courses. This paper defines the homework activity philosophy and
provides numerous examples across engineering.

2. Definition and philosophy

This section describes the common features of randomized, structured, auto-graded homework
activities. This section includes an overview and philosophy description. The subsequent section
gives examples from many engineering disciplines.

2.1 Overview

Our style of a homework activity consists of a series of auto-generated, randomized questions,
each progressively more difficult. Students must correctly answer a question at each level before
proceeding to the next higher level. For students, clicking on a level beyond the next
uncompleted level yields an error message (instructors may jump to any level, however). Each
level typically builds on earlier levels, so earlier levels must be completed first.

As shown in Figure 1, a homework activity contains:

(a). A title describing the activity at a high level.

(b). An area displaying the questions of the current level and fields for the student to answer.
(c). A bar showing each level of the activity. Blue, filled-in levels are the completed levels, and
the grayed out levels are the incomplete levels.
(d). A “Check” button validating students' answers when pressed.
(e). A “Next" button proceeding to the next higher level once the current level is successfully
completed. If the answer is incorrect, clicking “Next” provides a new question of similar
difficulty for the current level.
(f). An explanation for the given answer. The green checkmark indicates the answer is correct.
(g). Completion of the activity, viewed by filled-in icons next to the activity.

Figure 1. The components of a homework activity are numbered as follows: (a) title, (b) question
area, (c) levels, (d) "Check" button, (e) “Next” level button, (f) explanation [in this case, for a
correct answer], (g) progression bar.

As shown in Figure 2, when an answer is incorrect, another two views appear:
(a). Α red box indicating a wrong answer.
(b). A red X followed by an explanation when the answer is incorrect.

Figure 2. Homework activity when an answer is incorrect: (a) wrong answer, (b) explanation of
wrong answer.

2.2 Philosophy

Τhis section describes the core homework activity philosophy and the enhancements such
activities bring in modern, interactive learning.

One common feature in modern educational material is adaptivity. Adaptive learning provides
personalized learning by delivering customized learning paths to keep students engaged and
learning. The pace of learning is adjusted to each individual student using a variety of
customized resources and activities to address the student’s needs. Our homework activities are
designed in such a way that each level covers a different subset of concepts and each successive
level's subset is harder than the previous level. A student can continue retrying a level until a
correct answer is reached (including generating new questions). Such an incremental approach
represents "structured adaptivity", teaching specific concepts in an incremental manner to help
students progress, while still enabling a less-prepared student many opportunities to practice. An
explanation provides the student feedback, guides the student through the level, and adapts to the
given question and answer provided.

As more classes become virtual and instructors need to cope with larger groups of learners more
efficiently, auto-grading and self-assessment as a result, have become very important.
Self-assessment promotes students’ skills of reflective practice and self-monitoring, and
increases students’ motivation and confidence. This homework activity style encourages
self-assessment especially with the use of activities where students receive immediate feedback
on each question. Even when a student completes a question correctly, the student still benefits

from receiving feedback as the student's approach to solving the question may have been
different, or the student may have been uncertain about her/his answer.

The effort has been to design homework activities with as many randomized questions as
possible at each level to provide students with many examples to practice and learn from. And,
of course, a side-benefit may be that students have a harder time sharing answers. Our homework
activities support three different forms of randomization:

● Meaningful: Each meaningful permutation is a substantially different question and
requires a significantly different solution. A meaningful randomization is introduced to
avoid giving the same student the same meaningful question twice in a row. This also
makes the activities highly-useful for exam and homework purposes.

● Cosmetic: Extends a meaningful permutation to have more cosmetic variations to
mitigate quick cheating via look-up. An example from circuits is to randomize the
amount of ohms of a resistor, whereas a meaningful randomization might be to change
the placement of the resistor in the circuit.

● Test-case: Some disciplines' assessment is more open-ended, so a student's answer may
be compared against a set of test cases or properties. Such an assessment has a unique
problem: A student solving to satisfy the test cases, rather than the question statement.
So, along with a core set of test cases, a randomly-generated additional set of test cases
may be included. That random generation is done for each submission to an activity to
reduce the effectiveness of just solving for the test cases.

Examples of different activities with all three types of randomization are shown in the next
section.

2.3 Uses of randomized, structured, and auto-graded homework activities

The most common use of our homework activities is the same as for traditional homework
activities: As an assignment. Our homework activities enable students to practice concepts and
skills via a sequence of levels. Each level covers a different set of concepts, thus, completing an
entire homework activity demonstrates a student’s mastery.

When our homework activities are assigned by instructors, students must eventually successfully
answer each level in order to receive points, and thus such activities serve as a lightweight
assessment for instructors as well.

Another common use case is a student re-working through such activities while preparing for an
exam. Since the activities are randomized, the student has ample opportunity to hone skills and
reinforce understanding.

Another use case is an instructor assigning (or even re-assigning) a set of homework activities
for an exam. This use case has interesting motivational implications for students, especially
when students are informed that the activities will be the exam. Such an approach is analogous to
making all past exams available to students, then re-writing a new exam for the current course.
This approach works well due to the high number of question permutations in each activity.

3. Examples

This section includes detailed examples of the homework activity philosophy described in the
previous section. The examples are from a variety of engineering and engineering-adjacent
disciplines.

3.1 Programming in C++

Programming in C++ includes programming foundations and C++ basics, including branches,
loops, arrays and vectors, pointers, functions, classes, inheritance, and exceptions. We define two
types of homework activities: Code analysis and code writing. Both types assess students'
mastery in programming by introducing code snippets that students have to either read and
identify the code’s output, or write to complete a given code snippet.

3.1.1 Code analysis

In code analysis activities, students are asked to read one code snippet per level, an optional
input provided in a separate input text box (that can not be modified), and type the program’s
output, as shown in Figure 3. Students have to read through the code, follow the correct branches
and calculate the correct answer.

The student’s answer can be correct, incorrect, or nearly correct when the answer differs with the
expected only in whitespace. Certain whitespace characters, such as a newline or tab, that are in
the student's output but are not in the expected output, will be shown using special arrow
symbols. In the later case, the tool allows the student to edit their code in order to modify the
whitespace. On the one hand, whitespaces can be easily forgotten or accidentally added, so
students should not fail an entire level when their answer is correct. Some of the questions are
tricky enough so students showing mastery in reading a complex piece of code should be
rewarded. On the other hand, their answer should not be immediately accepted as they may make
the same mistake again if they don’t correct it themselves, such as shown in Figure 3.

Figure 3: Code analysis question with a for loop and a break statement where the student’s
answer is nearly correct. Student asked to make a small update to pass the level.

If the answer is incorrect, an explanation is shown that traces the code and indicates the correct
answer. As in other activities, clicking "Next" generates a new question of the same difficulty for
that level. If the answer is correct, a green checkmark appears, as shown in Figure 4.

Figure 4: Same code analysis question as Figure 3, except the student’s answer is correct.

3.1.2 Code writing

In code writing activities, students are shown an incomplete code snippet and are asked to type in
their own code as the instructions indicate, as shown in Figure 5. Students should replace /* Your
solution goes here */ (or '''Your solution goes here''') with their code while the surrounding
sample program's code is NOT editable. The instructions always show one or more examples of
the expected output/result depending on the different cases examined so that the question is
never ambiguous to the student. As with code analysis activities, when some concepts are not
directly covered in that section, hints are provided to help the student focus on the core concepts.

Figure 5: Outline of a code writing activity asking students to complete the code given in order
to make the program return a specific result.

Once an answer is submitted, the tool compiles the code. If a compilation error occurs, a
descriptive message indicating the error is shown, as in Figure 6.

Figure 6: Compilation error of student’s code in a code writing activity.

If the code is successfully compiled, a set of randomized test cases are run against the student’s
code. As shown in Figure 7, if all tests pass, a green checkmark appears with the message "All
tests passed", and the student can proceed to the next level. If any of the test cases did not pass,
the expected output (or returned value) is shown along with the actual output produced by the
student’s code.

Figure 7: Εxample of a correctly-answered code writing activity, where all the test cases pass.

3.1.3 Common patterns between code analysis and code writing activities

Overall, a few common patterns are followed in the design of both code analysis and code
writing activities:

● Randomization is rich, so that each permutation requires the student to read, interpret, or
think about the part of the level's code that covers the new point made in the
corresponding section.

● Randomization values are chosen to be distinct. As a result, the same value doesn't
appear in the same question set, so in the explanations each value represents a different
metric.

● Some good candidates for randomization are: different kinds of values used in the same
level (e.g. a choice between a list of integers and a list of real numbers), strings of
different lengths, order of print statements, comparison and arithmetic operators, function
argument values and many more.

● All points made in the section should be covered across the activity's levels and each
level should focus on one point.

● Functions and variables should not reveal their purpose so that students can't guess the
output. For example, "result" is used rather than "total", "compute()" is used rather than
"sum_of_squares()". Less committal names open up further opportunities for generalizing

the computation and data. They also facilitate randomization, so that, for example, the
randomization doesn't need to change "total" to "product".

● Code comments are often used to give students a hint, particularly regarding a concept
not directly covered in that section, thereby helping the student focus on the core
concepts taught in that section.

● Activities are written in such a way that reduces the amount of typing students need to
do. For example, instead of asking students to type "Sorry, your password was invalid",
an activity asks students to type "Invalid".

3.2 Data structures

Data structures include sorting, runtime complexity, lists, stacks, queues, hash tables, trees,
graphs, and more. This section introduces two different styles to give a sense of the types of
homework activities we have developed.

3.2.1 Graphs

The first style of question comes from algorithms involving graphs and trees. Such questions can
be demanding as students have to traverse one or more graphs multiple times and answer a set of
complex questions. If activities used that approach, getting an answer wrong would mean that the
student would be shown a different graph and would have to perform the same calculations from
scratch. For this reason, other question types are considered. As an example, Figure 8 shows a
breadth-first search traversal question presenting a list of possible traversals and asking students
to select the valid ones. This approach enables the students’ critical thinking and helps them
identify the key aspects of what makes a traversal valid.

Figure 8: Graphs question wherein a student applies the Breadth-first search algorithm and
identifies all valid traversals.

Figure 9 shows a similar example with 2-3-4 trees, where students are asked to select the valid
ones. The question’s explanation specifies the rules that were violated for each invalid graph.
Each invalid tree violates one specific rule and thus shows the importance of each rule.

Figure 9: Trees question wherein a student identifies all valid 2-3-4 trees.

Homework activity authors produce graphs used across different levels with different nodes, so
that all possible cases are covered and randomizations are meaningful enough without being too
repetitive.

3.2.2 Search and sort

The second style of question comes from searching and sorting algorithms. When introducing a
complex algorithm, each level focuses on assessing one step of the algorithm. This way, students
are shown how each step of the algorithm is executed and what it’s responsible for. Figure 10 as
an example, shows one step of the Quicksort algorithm where a list of numbers is to be
partitioned into a low partition with values less than or equal to the pivot and a high partition
with values greater than or equal to the pivot. Once all levels are completed, instructors know
that the student has successfully grasped all aspects of the algorithm.

Figure 10: Example of a homework activity asking students to perform Quicksort’s partitioning
step given a list of numbers and a pivot.

When less complex algorithms are introduced, such as quadratic search shown in Figure 11, each
level may assess students on applying the same algorithm in progressively harder examples of
the same data structure. When the data structure used consists of different states such as

Empty-since-start, Empty-after-removal, and Occupied for hash tables, great attention is given to
the data structure’s layout to make each state distinct.

Figure 11: Example of a homework activity with a quadratic search question for hash tables.

Finally, when it comes to explaining such algorithms, as shown in both Figures J and K,
explanations use a step by step approach to explain each part of the algorithm, so students can
identify any mistake easily or verify their end to end solution.

3.3 Discrete mathematics

Discrete mathematics includes a diverse set of math concepts, including propositional logic, set
theory, boolean algebra, induction, recursion, and discrete probability. Each concept requires a
unique question style to best assess a student's understanding of that concept and provide
students meaningful feedback. So, auto-graded homework questions in discrete mathematics
have many styles. This section includes three diverse styles to give a sense of that variety.

3.3.1 Propositional logic

The first style comes from propositional logic, specifically applying laws to transform an initial
proposition into a goal proposition, as shown in Figure 10. Initially, a student is given a
randomly-generated proposition and the simplified version of that proposition as the goal. The
student selects a law from the laws on the right-hand side, then the student selects the respective
parts of the proposition on the left-hand side on which to apply that law. If the law cannot be
applied, then the tool automatically informs the student, explaining why. Otherwise, the resulting
proposition is shown. If the resulting proposition is the goal proposition, then the tool

automatically marks the question as correct. Otherwise, the student can select the next law to
apply and continue work. This question style is used for both reducing and expanding a
proposition (and sometimes a combination of both as Figure 12 shows).

Figure 12: Propositional logic question wherein a student applies 1 law at a time to transform an
initial proposition into a goal proposition.

3.3.2 Set theory

A second style of question comes from set theory, specifically the assessment of set operations
and notation, as shown in Figure 13. A student is asked to select the region(s) of a Venn diagram
for a randomly-generated combination of set operations. Each level has specific combinations of
operations that are assessed. The student selects the regions then clicks Check. If correct, then
the student is told so. Otherwise, another Venn diagram with the correct answer is shown to the
right of the student's Venn diagram, and then the student is given another randomly-generated
question.

Figure 13: Set theory question wherein a student selects the region(s) of a Venn diagram defined
by a given combination of set operations.

3.3.3 Recurrence relations

The third style of question comes from recurrence relations, specifically the computation of a
term in a sequence. The student is given a randomly-generated definition of a sequence and
asked to compute the value of a randomly-generated term, as shown in Figure 14. Each level has
particular variations of a sequence definition from which a question is generated. A student
enters the value in an input field that only accepts numbers, and then the student clicks Check.
Regardless of correctness, the student is given an explanation showing how to compute each
term until the goal term.

Figure 14: Recurrence relation question wherein a student computes a term's value from a given
definition of a sequence. The explanation steps through each term in the sequence until the goal
term's value is found.

3.4 Digital design

Digital design introduces the basic concepts required to design and implement RTL logic. The
auto-graded homework activities cover a variety of concepts including implementing circuits
with gates, boolean algebra concepts, K-maps, Finite State Machines, datapath components, and
more. The style of each homework activity depends on the topic, and the randomizations are
tailored to best teach each concept effectively.

3.4.1 K-maps

The first style of question presented assesses K-map simplification as shown in Figure 15.
Initially, a student is given a randomly generated 3-variable K-map to simplify. The student is
asked to add circles to cover all the 1s in the K-map. To achieve that, the student clicks to select
one or two 1s and then clicks the “Add circle” button. When the student is done adding circles,
the student clicks the Check button to verify the answer. If the student tries to add an invalid
circle (Ex: diagonal 1s), the activity offers a hint that states "Invalid circle. Valid circles have
adjacent cells". If the student's answer contains the largest and fewest circles, the student can
proceed to the next level. Once the student completes all the levels in an activity, the student can
click any level to practice more.

Figure 15: Example of a 3-variable K-map simplification when the student is adding circles.

If the student's answer is wrong and does not contain the correct number of circles, the student is
offered an explanation of what was wrong with the answer, as shown in Figure 16. The incorrect
circles are shown in red, and the missing circles are shown in green. If the student is ready to try
the level again, the student will be presented with a different question of similar difficulty, that is
randomly generated.

Figure 16: Example of a 3-variable K-map simplification when student’s answer is incorrect.

This particular question presents only one type of K-map homework activity. Other questions
include 2-variable K-map simplification, writing the simplified terms for 3-variable K-maps,
converting truth tables and equations to K-maps, as well as “don't cares”. Each activity has
different questions, and each question has many meaningful randomizations, which is useful for
a student to practice and build skill.

3.4.2 Finite state machines

Another major concept covered in any digital design course is Finite State Machines (FSMs). We
have a variety of homework activities to test the different concepts of FSMs. The first question,
shown in Figure 17, tests the student’s ability to read an FSM and walk through the different
states and transitions. The student is given an FSM and has to indicate the values of the output
and the state of the FSM for the given input and clock cycle combinations. The question provides

a detailed explanation of the input value and the transitions taken at each clock cycle to arrive at
the expected values of the state at each clock cycle. Using the value of the state, the output
values are determined. This activity uses two types of randomizations: one on the FSM itself by
changing the transitions to different states and the state outputs, and another one on the timing
diagram by changing the value of the input itself.

Figure 17: Example of question capturing behavior as an FSM.

Another question that assesses the FSM concepts is one with an FSM simulator that enables the
students to build an FSM as shown in Figure 18. The student is given a simple sequence
generator FSM question to start with. Questions 2 and 4 ask questions with one and two outputs,
respectively. Question 3 asks the student to maintain a one cycle pulse on the output given an
input. Here, the student captures the behavior of the question by building an FSM. The student

can add states with actions for state outputs, and transitions with conditions for each transition.
The student has the ability to simulate the FSM to verify the behavior before checking the result.
The randomizations are on the pattern to be generated.

Figure 18: Example of building an FSM.

Other homeworks include converting FSMs to truth tables, Mealy FSMs, controller clock
frequency, and converting circuits to FSMs.

3.4.3 Timing diagram

The understanding of timing diagrams is crucial to building hardware circuits. While there are a
few homework activities that teach and assess the understanding of this concept, Figure 19
shows one such timing diagram activity for gate output. The student is given a gate and the
values of the gate inputs are presented as a timing diagram. This activity has four questions: the
first two questions ask for the output of an AND gate, and the next two questions ask for the
output of an OR gate. The student clicks on the output's given dotted lines to change the value of
y from 0 to 1. If the entered answer is incorrect, the student is shown the correct answer, in
comparison with the student's wrong answer. The student is then presented with another question
in the same level but with different input values. Like all other homework activities presented in
this paper, if the student enters the correct answer, the student moves on to the next level.

Figure 19: Example of a timing diagram of gate output.

Other homeworks include this timing diagram tool to teach different concepts. For example, the
working of the SR latch, D flip-flops, and load registers.

3.5 Circuits

Circuits is a required course for all electrical and computer engineering students. Circuits
homework activities cover basic electricity concepts like resistors, capacitors, and resistor
networks using different laws. Then, slightly more advanced topics like network and
time-domain analysis, op-amps, and frequency-domain analysis are also covered. For circuits,
some activities focus more on randomizing the values of the circuit components to help students
practice with the formulae and calculations.

3.5.1 Equivalent resistances for combinations of series and parallel resistors

This homework activity presents students with different circuits and asks the student to calculate
the equivalent resistance. As shown in Figure 20, question 1 presents the student with a simple
circuit that consists of three resistors, and question 5 presents the student with a complex circuit
with 7 resistors in a series/parallel combination. Each question adds resistors to present
increasingly complex circuits. If the student gets the answer incorrect, the student is presented
with a detailed explanation of the formula and how the values are applied to arrive at the correct
answer. This explanation is presented to the student even if the student gets the answer correct to
reinforce the concepts. Each question consists of several different questions with the values of
the resistors changed, to enable the student to do more practice.

Figure 20: Example of a circuits question calculating the equivalent resistance.

3.5.2 Op-amps

This homework activity requires students to find the voltages for inverting op-amps. The activity
has five questions, and each question covers a different concept. The first question, as shown in
Figure 21, asks students to calculate Vout, the second question asks for Vin, and the third
question asks for -vin, the question level asks for R2, and the fifth question presents a conceptual
question. The randomizations within each level are generated by changing the values of the
resistors and voltages.

Figure 21: Example of circuits question finding voltages for inverting op-amps.

4. Data on student submissions to homework activities

This section presents student submission data on the randomized, structured, and auto-graded
homeworks described in the previous section and gives a sense for whether students were
successful at solving the levels. Some past research has deeper analysis on specific subjects,
including digital design [7] and circuits [8].

The data presented is from the latest release and includes data of students who were awarded
points for completing the levels and students who were not.

The metrics included per subject are:
● Number of homework activities: A count of the total number of homework activities in a

subject.
● Number of levels: The total number of levels across all the homework activities in a

subject.
● Number of submissions: The total number of student submissions for any homework

activity level.
● Completion rate: A percentage approximating persistence, that shows how many students

complete a level after attempting. This is computed as the (number of completed levels) /
(number of attempted levels), wherein a completed level for a student has at least 1
correct submission and an attempted level for a student has at least 1 submission.

Table 1: Student submission data to homework activities across multiple engineering subjects.

As shown in Table 1, each subject has homework activities that range from a few tens of
activities to over 200 activities for Programming in C++. Each homework activity has several
levels and each of those levels have many submissions. Most students completed the level that
they had attempted. Across all the subjects, an average of 98.4% of students that attempted a
particular level ended up completing that level. This indicates that most students were able to
successfully solve the level that was attempted. Each subject had hundreds of thousands to
millions of submissions, so these activities have had a lot of use.

5. Authoring considerations

A traditional homework presents the same question to each student. The author of a traditional
homework can quickly proofread and revise the question, while getting help from auto-spelling
and auto-grammar tools. And then the author can simply email a colleague or assistant to quickly
review. A highly-randomized homework activity adds complexity at each step. This section
describes different techniques to handle each complexity, as well as present trade-offs between
competing techniques.

One complexity is how to define questions. One technique is to explicitly author a number of
questions then just randomly pick one question. While this technique does not scale well with the
number of questions, some concepts, especially the more conceptual ones, do not offer many
permutations. Another technique is to use structured randomization, such as randomizing an
integer in the question to be picked from a list of integers, or similarly randomizing a word to be
picked from a list of words. The list is the structured randomization. Structured randomization
enables many questions to be concisely defined. Adding another permutation may be as simple
as adding another item to the list. An activity may have multiple lists, such as one list for one
number and another list for a word. The number of questions then becomes a product of the
lengths of each list (e.g., 3 lists with 10 items each is 10*10*10=1,000 questions). One challenge
with structured randomization is when interdependencies between lists are introduced, such as

Subject Number of
homework activities

Number of
Levels

Number of
submissions

Completion
rate

Circuits 50 205 412,317 98.1%

Data Structures 44 169 2,636,916 97.9%

Digital Design 55 246 1,517,738 98.3%

Discrete Math 66 297 4,419,262 98.9%

Programming in C++ 210 541 9,290,225 98.9%

avoiding picking the same number from two lists like a=[1, 2, 3] and b=[2, 3, 4]. A possible
solution is to contrive each list to have elements not found in the other list, but that reduces the
number of possible questions. Another solution is supporting another structure, called a
collection. A first collection has a=[1] and b=[2, 3, 4], a second has a=[2] and b=[3, 4], and a
third has a=[3] and b=[2, 4]. The collection is in a list itself, so that one of the collections is
randomly-selected, then one element from each list is selected. That avoids the loss of potential
questions, but certainly adds complexity. A third technique to define questions is by the author
writing code, such as Python or MATLAB, that generates a question. This technique is the most
flexible, but requires code writing experience, introduces the possibility of crashing the
randomization process, and makes it challenging to compute the number of possible questions.

Another complexity is how to review a randomized homework activity. One technique is to
generate one question, proofread, and repeat. This manual technique does not scale, so a
reasonable upper-bound on the number of questions to proofread needs to be set, such as a
constant number (like 5 questions), a constant proportion (like 20% of all questions), or a
likelihood that no questions have errors (like enough questions are proofread to be 90%
confident that no other question has an error). Another technique is to include automation where
possible, such as automatically generating many questions, running each question through a
spell-checker, then report to the author if an error was found. A similar technique can be used for
grammar checking and other forms of automatable error checking. Such error checking may
again not be feasible when the number of question permutations is sufficiently large.

Another complexity introduced by highly-randomized homework activities is handling reports of
a mistake in a question; namely, identifying how to reproduce the question and verify that the
question was fixed. One technique is to log each question that was generated for each user,
including how to generate the question, if possible.

6. Conclusions

This paper presented numerous examples of randomized, structured, and auto-graded homework
activities across several engineering disciplines. 600,000 students across 800 universities have
submitted 90 million times to these homework activities. The homework activities are structured
into a sequence of incrementally-harder questions. Each question is randomly-generated from
among other questions of a similar difficulty. Each question is automatically graded, and often a
question-specific (and sometimes answer-specific) explanation is provided. Such homework
activities share much in common with traditional homework approaches in terms of benefits, yet
provide substantial advantages to students and instructors at the cost of being complex to author.
This paper discussed the challenges of those complexities, as well as the trade-offs between
techniques to mitigate each challenge. For instructors and authors, a key consideration is the
balance between providing practice for students versus fatiguing the students. These homework

activities continue to evolve to support additional disciplines and to provide additional
advantages to students, instructors, and authors.

References

[1] Koller, D., & Ng, A. (2013, January). The online revolution: Education for everyone. In
Seminar Presentation at the Said Business School, Oxford University. Retrieved from http://www.
youtube. com/watch .
[2] Mohammed, M. K. O. (2020, February). Teaching Formal Languages through Visualizations,
Simulators, Auto-graded Exercises, and Programmed Instruction. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education (pp. 1429-1429).
[3] Basitere, M., & Ivala, E. N. (2017). An Evaluation of the Effectiveness of the use of
Multimedia and Wiley Plus Web-Based Homework System in Enhancing Learning in The
Chemical Engineering Extended Curriculum Program Physics Course. Electronic Journal of
e-Learning , 15 (2), pp156-173.
[4] Hagerty, G., & Smith, S. (2005). Using the web-based interactive software ALEKS to
enhance college algebra. Mathematics & Computer Education , 39 (3).
[5] Knewton. https://www.knewton.com. Visited: March 2021.
[6] zyBooks. https://www.zybooks.com/. Accessed May. 2021.
[7] Rajasekhar, Y., Edgcomb, A., Vahid, F. (2019, June). Student Usage of Digital Design
Interactive Learning Tools in an Online Textbook. In ASEE Annual Conference and Exposition,
Conference Proceedings, June, 2019.
[8] Sambamurthy, N., Edgcomb, A., & Rajasekhar, Y. (2019, October). Student Usage of
Interactive Learning Tools in an Online Linear Circuit Analysis Textbook. In 2019 IEEE
Frontiers in Education Conference (FIE) (pp. 1-6). IEEE.

