
Experiences Teaching Coral Before C++ in CS1

Frank Vahid
 Computer Science and Engineering
University of California, Riverside

 Riverside, California, USA
vahid@cs.ucr.edu
Also with zyBooks

Kelly Downey
Computer Science and Engineering
University of California, Riverside

 Riverside, California, USA
kldowney@ucr.edu

Lizbeth Areizaga
 Computer Science and Engineering
University of California, Riverside

 Riverside, California, USA
larei002@ucr.edu

Ashley Pang
 Computer Science and Engineering
University of California, Riverside

 Riverside, California, USA
apang024@ucr.edu

ABSTRACT
Coral was introduced several years ago to ease the learning in
college-level introductory programming courses. Coral consists of
a simple textual code language and corresponding flowchart
language and a free web-based educational simulator. Previous
researchers described the benefits of Coral in CS0 courses and the
first weeks of CS1 courses. We previously used Coral in CS1 and
enjoyed the teaching experience, due to: the simple intuitive
syntax, the simulator’s auto-creation of a flowchart from code,
and the simulator’s visualization of code and flowchart program
execution. However, we wanted to ensure we weren’t hurting
students with the transition from Coral to C++. This paper
describes our experiences of teaching Coral in a ~100-student CS1
section for weeks 1-3 versus two other sections that taught C++
only. We performed analyses to answer three research questions:
(1) Do students learn Coral more easily than C++? (2) Do students
easily transition from Coral to C++? and (3) Do Coral-treated
students do equally well on later C++ programs? We analyzed
performance on auto-graded code-writing problems in zyBooks.
We did not find support for (1), but did find support for (2) and
(3), with Coral-treated students easily switching to C++ and
performing equally well on later C++ programs. We conclude that
CS1 instructors who enjoy the early-weeks teaching benefits of
Coral can do so confidently knowing that students will perform
equally well later in the course.

CCS CONCEPTS
• Social and professional topics - Professional topics - Computing
education - Computing education programs - Computer science
education - CS1

KEYWORDS
CS1, Programming, Coral, Simulator, Flowcharts, Pseudocode

ACM Reference format:

Frank Vahid, Kelly Downey, Lizbeth Areizaga, and Ashley Pang. 2023.
Impact of Several Low-Effort Cheating-Reduction Methods in a CS1 Class.
In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2023), March 15--18, 2023, Toronto, ON, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3545945.3569732

1 INTRODUCTION
Coral is a language designed in 2017 via collaboration among two
universities and a company to fill a gap in intro college-level
programming courses [1]. The gap was between syntax-free
block-based graphical languages like Scratch, Snap, and Alice
popular among K-12 learners [2, 3, 4] and syntax-focused
commercial textual languages like Python, Java, and C++ used in
college-level intro programming courses. Block languages are
perceived by some students as beneath college-level [5], and some
students have trouble transitioning from blocks to textual
languages [6, 7]. On the other hand, Python, Java, and C++ were
made for professionals and have syntax or rules that are hard on
beginners. Ex: In Python3, x = input(), then print(x + x), with input
2, outputs 22, not 4.

Figure 1: A Coral example: Outputting the max of two
input numbers. (Image source: CoralLanguage.org).

This work is licensed under a Creative Commons
Attribution International 4.0 License.

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.
© 2023 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9431-4/23/03. https://doi.org/10.1145/3545945.3569732

340

mailto:vahid@cs.ucr.edu
mailto:kldowney@ucr.edu
mailto:larei002@ucr.edu
mailto:apang024@ucr.edu
mailto:apang024@ucr.edu
https://doi.org/10.1145/3545945.3569731
https://doi.org/10.1145/3545945.3569732
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3545945.3569732
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545945.3569732&domain=pdf&date_stamp=2023-03-03

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Frank Vahid, Kelly Downey, Lizbeth Areizaga, & Ashley Pang

Coral’s code version has an executable pseudocode-like syntax
with just 9 constructs for variables, input, output, assignment,
branches, while loops, for loops, functions, arrays and with just a
couple data types. Each construct has an equivalent flowchart
syntax. Figure 1 shows a simple example using Coral’s code and
flowchart languages. Figure 2 shows the free web-based simulator
[8], which shows variable values, input/output, and step-by-step
program execution on either the code view (shown) or flowchart
view (which is auto-derived from the code). Coral was used by
20,000+ students in 2021 [8].

Figure 2: Coral’s web-based simulator.

Coral enforces rules that aim to reduce non-logic-focused
decisions for learners, such as all indents being 3 spaces, one
statement per line, and all declarations before statements. Coral is
strongly typed. Coral’s simulator gives learner-focused feedback
for syntax errors, such as:

“Integer” is not recognized. Did you mean: integer? Note:
Capitalization matters.

McKinney [9] found better grades using Coral in CS0 vs non-
executable pseudocode or flowcharts in Raptor [10].

Previous research on CS1 courses has examined using learner-
focused languages like Scratch, Snap, or Alice in early weeks
before transitioning to a commercial textual language like Python,
Java, or C++, but problems exist [7]. For example, Powers [11]
found students were confused due to different object models and
frustrated having to deal with syntax errors in the textual
language, and performed less well after transitioning vs. a
comparison group. Garlick [5] found students were frustrated
having to learn a language that wasn’t a “real language”. In
contrast, using Coral in CS1 prior to C++, Allen [12, 13] found
students liked the language and simulator and performed equally
well on an identical final exam as C++-only students. But, they
taught Coral for 5 weeks and found some students would have
preferred to start C++ sooner.

In this work, we taught Coral for our CS1’s first 3 weeks, then
switched to our main language of C++, and had an excellent
teaching experience. We make frequent use of the simulator
during lectures and office hours to help students visualize
sequential execution, storage and updating of variable values, and

branch and loop execution in both code and flowchart views.
Students indicate appreciation for the simulator too. But, we
wanted to know if students were learning more easily and if the
transition to C++ was going smoothly, neither of which was
addressed in previous work. Furthermore, we wanted to know
how Coral-treated students did on later C++ programming tasks
vs. C++-only students (and not just doing well on the final exam
as in previous work). This paper provides analyses aiming to
answer those questions.

2 CS1 AND CORAL USE

2.1 CS1
Our CS1 is at a 30,000-student public state “R1” (research active)
university, being a mature course, teaching about 1,500 students
per year, half computing majors and half non-majors (mostly
required to take CS1 by their science/engineering major). The 10-
week quarter course teaches C++ with weekly topics (before we
started using Coral) generally being: I/O, Assignments, Branches,
Loops(1), Loops(2) + Strings, Midterm, Functions(1), Functions(2),
Vectors, File I/O + Classes, Classes + Misc.

The course uses zyBooks [14] for reading, homework, and
programs, configured so that every week is one chapter. Every
week follows the same pattern: “reading” with ~100 learning
questions (Participation Activities or PAs, due before Tuesday’s
lecture), ~20 homework problems (Challenge Activities or CAs,
either code reading or code writing to complete a small program,
due Friday night), and 5-8 programming assignments (Lab
Activities or LAs, typically with solutions 20-50 lines each, due
Sunday night). PAs, CAs, and LAs are all in the zyBook, and are
auto-graded with immediate feedback, partial credit, and
unlimited resubmissions (until instructor-set deadlines if any).

2.2 Coral use
zyBooks has similar intro programming content for both Coral
and C++ (among other languages). We configured our zyBook to
combine Coral and C++ content. Our initial attempt three years
ago involved 4.5 weeks of Coral: I/O + Assignments, Branches,
Loops + Arrays, Functions(1), Function(2). The end of Week 5 had
a Coral-only midterm, and the remaining 5 weeks taught C++,
redoing all the above topics plus strings and a few additional
topics. While overall a good experience, many students were
eager to start with C++ sooner, and some struggled with the C++
programs compressed into 5 weeks. Thus, we now teach 3 weeks
of Coral before switching to C++, as shown in Figure 3. In Week
4, the topics in Weeks 1-3 are covered again but in C++.

341

Experiences Teaching Coral Before C++ in CS1 SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

Figure 3: Our CS1 now teaches Coral in Weeks 1-3 up to
loops, then switches to C++ in Week 4.

This Coral approach was used Fall 2021 in a ~100-student section
and compared with two ~100-student C++-only sections that
quarter, to address our research questions.

3 ANALYSES

3.1 Do students learn programming more easily
in Coral than in C++?
We enjoyed the first weeks’ teaching experience using Coral,
largely due to the easy syntax, the visual step-by-step simulator,
and the auto-creation of flowcharts. However, we wished to also
test the following hypothesis:

● H1: In the first weeks of learning programming, students
spend less time learning basic programming concepts
using Coral than using C++.

To compare, we focused on a particular kind of zyBooks
Challenge Activity known as a “progression CA”, whose features
include: (1) multiple parts of increasing challenge, and (2) each
part’s problem is auto-generated. We focused on progression CAs
because the auto-generation greatly reduces the confounding that
may occur on other programming tasks where students might be
copying from classmates or from online solutions websites.
zyBook progression CAs either involve code reading (“What does
this code output?”) or code writing (“Complete this code to do X)”;
we focused only on code writing progression CAs.

We found four Coral CAs in our 3-week Coral content nearly
identical to C++ CAs in the early weeks of the C++-only sections.
More specifically, we found several Coral CA parts that were
nearly identical to C++ CA parts. Results are shown in Figure 4,
comparing time spent by students, which we determined using
CA log data provided by zyBooks. The logs have time stamps for
every run. We computed the time spent using the difference
between timestamps, ignoring breaks of 10 minutes or more.

CA
C++
score

Coral
score

C++
time

Coral
time

C++
runs

Coral
runs

Writing
output

1.00 1.00 8.2 2.5 11.2 7.8

Calling math
functions

0.99 0.98 1.8 2.6 4.2 7.8

Writing if
branches

0.98 0.98 5.9 6.3 9.4 23.9

Writing if-
else branches 0.94 0.97 7.1 6.9 8.7 13.7

Average 0.98 0.98 5.7 4.6 8.4 13.3

Figure 4: Coral students vs. C++ students on nearly-
identical progression CA parts, in the first few weeks of the
quarter. Time is in minutes.

Based on time spent, the data does not support the hypothesis.
Writing output seemed easier in Coral, but the activities with
more logic seemed about the same. Coral students did not spend
more time either. These results match research comparing block-
based and textual languages for learners where a research meta-
analysis showed insignificant differences [15]. It seems that the
difficulty of learning the logic of programming overshadows the
difficulty of learning commercial language syntax.

The data did yield an interesting point: Coral students ran code
more than C++ students for two CAs having branches. This is
likely due to students using the simulator to visualize step-by-step
execution of the code and flowchart views. In contrast, the C++
CAs simply show the code’s results (the student presses “Run”,
causing compilation/running on a cloud server, with the output
results being returned). Even with those additional runs by Coral
students, the total time solving those coding problems did not
increase.

3.2 Do students easily transition?
A concern is the Coral to C++ switch may cause students trouble
as they mix up syntax. Our Coral section switched to C++ in Week
4, in which Coral-treated students did many of the same content
sections that the C++-only students had done or would be doing.
Many of those C++ content sections were review for Coral
students, nearly identical to Coral sections but using C++ instead.
Our hypothesis was:

● H2: Coral students would not take more time doing C++
CAs during the transition in Week 4, and would achieve
the same scores, vs. the C++-only students doing those
same CAs.

We examined that week’s C++ CAs and found several that also
appeared in the C++ section’s zyBook. Figure 5 provides results.

342

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Frank Vahid, Kelly Downey, Lizbeth Areizaga, & Ashley Pang

CA
C++
score

Coral
score

C++
time

Coral
time

C++
runs

Coral
runs

Writing
output 1 0.99 8.2 3.4 11.2 5.8

Calling
math

functions
0.99 1.00 1.8 1.2 4.2 3.4

If branches 0.98 0.97 5.9 4.2 9.4 6.2
If-else

branches
0.94 0.98 7.1 5.7 8.7 6.2

Average 0.98 0.99 5.7 3.6 8.4 5.4

Figure 5: Coral-treated students doing C++ CAs in Week 4,
versus C++-only students doing those same CAs. Time is in
minutes. Coral-treated students do not spend more time as
was the concern.

The data supports the hypothesis. Coral students did not spend
more time, and in fact spent less time (3.6 min vs. 5.7 min on
average, or 40% less) due to those CAs being a review of concepts
with different syntax. Coral students achieved virtually the same
score (0.99 vs. 0.98). The data suggests Coral-treated students
transitioned easily.

3.3 Do Coral students do equally well on later
C++ programs?
We wanted to ensure the early Coral treatment did not harm
students’ learning of C++. We had the following hypothesis:

● H3: Coral-treated students will perform equally well on
later C++ programs as C++-only students, achieving
similar scores in similar times.

CA C++
score

Coral
score

C++
time

Coral
time

C++
runs

Coral
runs

For loops 0.99 1.00 4.3 5.0 6.5 7.1
Functions
with loops

0.95 0.89 9.6 14.8 10.6 14.3

Check
password

0.88 0.93 9.4 7.8 9.4 9.2

String
manipul.

0.92 0.99 7.0 5.7 8.2 8.0

Vectors 0.75 0.70 18.7 16.8 14.3 14.3

Average 0.90 0.90 9.8 10.0 9.8 10.6

Figure 6: Coral-treated students doing C++ CAs in latter
weeks, versus C++-only students doing those same CAs.
Time is in minutes. Coral-treated students do not perform
worse as was the concern.

Allen [12] previously compared Coral-treated students with C++-
only students on final exam performance and found no difference,
thus supporting the hypothesis. Here, we examine performance
on progression CAs. Our data also supports the hypothesis. Coral-
treated and C++ students both achieved the same scores

(averaging 0.90 out of 1.0) and spent nearly identical time (10.0
min vs. 9.8 min).

4 THREATS TO VALIDITY
The Coral section was taught by a different instructor (Instructor
A) than the two C++ sections (Instructor B). The instructor
differences could have impacted the analyses. For H1, perhaps
Coral students would have learned more easily but Instructor A’s
weak teaching negated any benefit. For H2 and H3, perhaps Coral
students would have struggled but A’s great teaching
compensated. But, Instructors A and B are both experienced (over
10 CS1 terms each) with strong teaching evaluations and
consistent grades. Beyond that, both instructors taught Spring
2022 CS1 as one course, using the same zyBook, syllabus, exams,
graders, etc., and both used the early-Coral approach. Figure 7
shows results on the same CAs. Students performed similarly
across Instructors A and B, which increased confidence that the
different instructors were not strongly confounding (p-value for
time was 0.55, and runs 0.72, far from 0.05 for statistical
significance, using a two-tailed unpaired t-test).

CA
Score
(A)

Score
(B)

Time
(A)

Time
(B)

Runs
(A)

Runs (B)

1 0.99 1.00 3.5 5.7 14.8 22.9

2 0.99 0.98 2.1 2.7 7.8 7.9

3 0.97 0.98 5.1 6.7 20.5 23.4

4 0.98 0.98 7.2 6.4 14.1 11.9

5 1.00 0.98 2.9 3.6 5.8 6.0

6 0.99 0.99 1.5 1.3 4.1 3.8

7 0.97 0.99 4.3 3.1 7.3 5.3

8 0.98 1.00 5.5 5.7 6.0 6.4

9 1.00 1.00 2.3 2.8 4.1 4.3

10 0.96 0.99 4.0 4.2 5.9 6.5

11 0.91 0.99 10.7 12.6 12.0 13.3

12 0.95 0.89 7.4 8.8 7.8 6.7

13 0.95 0.86 8.5 11.4 6.5 8.8

Average 1.0 1.0 5.0 5.8 9.0 9.8

Figure 7: Results on the same CAs as earlier, but in a later
quarter when Instructors A and B taught the same class. No
significant difference is observed.

Ideally, in the Fall 2021 comparison, the Coral-treated and C++-
only students would have taken the same C++ final exam on
which students could then have been compared. However, as the
course was transitioning from the Covid-pandemic era back to
regular classes, Instructor A chose to continue with online
programming exams (auto-graded), while Instructor B switched
back to the regular in-person written exams (half multiple choice,
half code writing with manual grading). Due to the different exam
modalities, though the two groups both did about the same on

343

Experiences Teaching Coral Before C++ in CS1 SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

their exams, drawing conclusions from that comparison did not
seem appropriate, so we do not report those results.

This analysis was performed on progression CAs rather than LAs,
because we have found progression CAs are less likely to involve
cheating due to generating unique problems for each student.
Ideally, we would also analyze the larger “Lab Activity” (LA)
programs. But, for LAs, great care must be taken to control
cheating because students in CS1 classes (nationwide) are known
to copy from classmates, to obtain solutions from online sites, to
hire contract programers, etc. Because Coral is not as widely used
as C++, it might be expected that C++ students would have more
ability to copy solutions or hire contractors, potentially skewing
results. Furthermore, for the terms under consideration, our
different CS1 sections involved differences in the prevention,
detection, and punishment of cheating on LAs, also skewing
results. However, analysis of LAs would be an interesting future
work.

6 TIME SPENT
zyBooks provides instructors with per-student time data for PAs,
CAs, and LAs. As additional analysis beyond this paper’s main
focus, Figure 8 shows that time data for the Coral-treated and
C++-only students in the weeks preceding the midterm (Weeks 1-
5). As a reminder:

● Coral students studied: 1 Coral I/O/Assignments, 2 Coral
Branches, 3 Coral Loops, 4 C++ I/O/Assignments, Branches,
Loop, 5 C++ Functions/Strings.

● C++-only students studied: 1 I/O, 2 Assignments, 3 Branches,
4 Strings/Loops, 5 Loops.

The time data indicates that both groups of students spent roughly
the same time in Weeks 1-3, with Coral students spending slightly
more. However, the data shows that the Coral-treated students
spent more time during Week 4 (the transition week), but then
C++ students spent a bit more in Week 5. We plan to investigate
ways to smooth Week 4’s time commitment for Coral-treated
students; the number of CAs in particular might be a good target
for reduction, and we might reduce LAs as well, perhaps
combining some.

7 CONCLUSIONS
As in dozens of university courses, in our CS1 course, we have
begun teaching Coral in the first weeks then transitioning to a
commercial language (in our case, C++). We found the teaching
and learning experience using Coral to be excellent largely due to
Coral’s simple learner-focused code syntax, the auto-creation of
flowcharts from the code, and the free online education-focused
Coral simulator. We found that Coral students don’t spend
significantly less time doing their auto-graded coding homework
problems (CAs) in early weeks -- perhaps there is simply a
minimum time needed to learn programming logic, and C++’s
more complex syntax doesn’t impose too much of a barrier in the

(a)

(b)

Figure 8: Weekly time spent prior to the midterm: (a)
students using Coral in Weeks 1-3, then transitioning in
Week 4 by redoing content in C++, (b) C++-only students.

early weeks. Coral students did conduct more runs, without
spending more time, for the CAs involving branches, suggesting
they were making good use of the educational simulator. We
found Coral students easily transitioned to C++, spending no
more time doing the C++ CAs during the transition week -- in
fact, spending 40% less time on the particular CAs being
compared, as those CAs were largely a review for them. Doing
such a review is a strategy some professors follow intentionally,
along a spiral learning process. We also found that Coral students
did equally well on later C++ CAs, suggesting no harm in their
learning of C++ imposed by learning Coral first. As such,
instructors wishing to experiment with using Coral in the first
weeks of their CS1 before teaching a commercial language,
perhaps to ease students nerves, to make use of Coral’s free
educational simulator, and/or to level the playing field a bit
regarding prior programming experience (since most students
won’t already know Coral), can likely do so confident that their
students will transition easily to the commercial language and will
learn the commercial language equally well.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 2111323.

REFERENCES
[1] Edgcomb, A.D., Vahid, F. and Lysecky, R., 2019, June. Coral: An ultra-simple

language for learning to program. In 2019 ASEE Annual Conference &
Exposition.

[2] Cooper, S., Dann, W. and Pausch, R., 2000. Alice: a 3-D tool for introductory
programming concepts. Journal of computing sciences in colleges, 15(5),
pp.107-116.

344

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Frank Vahid, Kelly Downey, Lizbeth Areizaga, & Ashley Pang

[3] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B. and Kafai, Y.,
2009. Scratch: programming for all. Communications of the ACM, 52(11),
pp.60-67

[4] Harvey, B., Garcia, D.D., Barnes, T., Titterton, N., Armendariz, D., Segars, L.,
Lemon, E., Morris, S. and Paley, J., 2013, March. Snap!(build your own blocks).
In Proceedings of the 44th ACM technical symposium on Computer science
education (pp. 759-759).

[5] Garlick, R. and Cankaya, E.C., 2010, June. Using Alice in CS1: A quantitative
experiment. In Proceedings of the fifteenth annual conference on Innovation
and technology in computer science education (pp. 165-168)

[6] Moors, L., Luxton-Reilly, A. and Denny, P., 2018, April. Transitioning from
block-based to text-based programming languages. In 2018 International
Conference on Learning and Teaching in Computing and Engineering
(LaTICE) (pp. 57-64). IEEE.

[7] Blanchard, J., Gardner-McCune, C. and Anthony, L., 2020, February. Dual-
modality instruction and learning: A case study in CS1. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education (pp. 818-824).

[8] CoralLanguage.org, accessed 2022.

[9] McKinney, D., Edgcomb, A.D., Lysecky, R. and Vahid, F., 2020, June. Improving
pass rates by switching from a passive to an active learning textbook in cs0. In
2020 ASEE Virtual Annual Conference Content Access.

[10] Carlisle, M.C., Wilson, T.A., Humphries, J.W. and Hadfield, S.M., 2004. Raptor:
introducing programming to non-majors with flowcharts. Journal of
Computing Sciences in Colleges, 19(4), pp.52-60.

[11] Powers, K., Ecott, S. and Hirshfield, L.M., 2007, March. Through the looking
glass: teaching CS0 with Alice. In Proceedings of the 38th SIGCSE technical
symposium on Computer science education (pp. 213-217).

[12] Allen, J.M. and Vahid, F., 2020, June. Teaching Coral before C++ in a CS1
Course. In 2020 ASEE Virtual Annual Conference Content Access.

[13] Vahid, F., Allen, J.M., Edgcomb, A.D. and Lysecky, R., 2020, July. Using the free
Coral language and simulator to simplify first-year programming courses. In
2020 First-Year Engineering Experience.

[14] zyBooks.com, accessed 2022.
[15] Xu, Z., Ritzhaupt, A.D., Tian, F. and Umapathy, K., 2019. Block-based versus

text-based programming environments on novice student learning outcomes:
A meta-analysis study. Computer Science Education, 29(2-3), pp.177-204.

345

