
Concise Graphical Representations of Student Effort
on Weekly Many Small Programs

Joe Michael Allen1, Frank Vahid1,2

1Computer Science and Engineering, University of California, Riverside
2zyBooks, Los Gatos, California

jalle010@ucr.edu, vahid@cs.ucr.edu

ABSTRACT
In recent years, hundreds of CS1 classes have adopted a many
small programs (MSP) approach to weekly programming
assignments. The MSP approach involves assigning students
several smaller programming assignments per week, for example
5-7, versus the traditional one larger program (OLP) per week.
This shift is largely made possible by easy-to-use program auto-
graders that have arisen in recent years. Such auto-graders make
grading so many programs feasible, while also providing students
with immediate feedback. The MSP approach has been shown to
yield advantages that include earlier starts, reduced anxiety,
increased confidence, the ability to switch to another program if
stuck, better exam performance, and less attrition, with analysis
showing students easily transition to larger programs later. We
desired to gain insight on how our CS1 students were working
through our weekly MSPs. Thus, in 2018, we began exploring
automated creation of concise representations of student behavior
while they developed their programs, what we call “workflow
charts”. We used a popular commercial auto-grader that has a
built-in development environment and provides detailed log files
of every program compile/run by each student. We describe the
goals of such a representation, the evolution of our representation
to its current status, various design trade-offs, our current usage,
and numerous possible future uses in CS1 classes. We plan to
create a website for any instructor to upload such log files to gain
insight on their own class’ performance.

CCS CONCEPTS
•Social and professional topics~Professional topics~Computing
education~Student assessment•Social and professional
topics~Professional topics~Computing education~Computing
education programs~Computer science education~CS1•Social and
professional topics~Professional topics~Computing
education~Computing education programs~Software engineering
education

KEYWORDS
Student effort, Many small programs, MSPs, Graphical
representation, CS1

ACM Reference format:
Joe Michael Allen and Frank Vahid. 2021. Concise Graphical
Representations of Student Effort on Weekly Many Small Programs. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education (SIGCSE ‘21), March 13--20, 2021, Virtual Event, USA. ACM, New
York, NY, 6 pages. DOI: https://doi.org/10.1145/3408877.3432551

1 Introduction
Beyond seeing final submissions, many instructors want insight
into how students went about the process of writing their code --
when did they start, how often did they test, how correct was their
code along the way, how much time did they spend overall, etc. As
such, some now require students to use version control software
like github, to at least see some versions of the code during
development. However, program auto-graders provide a distinct
opportunity for such insight, having grown tremendously in use in
recent years, including new commercial tools like zyBooks [1],
Gradescope [2], Mimir [3], Vocareum [4], CodeLab [5], and
MyProgrammingLab [6]. Some of those also have development
environments so that all a student’s programming activity can be
recorded: “develop” runs while the student is still developing and
testing their code, and “submit” runs where they submit code for
auto-grading. Non-commercial systems also record develop runs
and/or submit runs, like Runestone [7] and BlueJ [8]. Such
recording opens new possibilities for instructors to gain the
desired insight in student coding.

Meanwhile, hundreds of schools, including ours, have converted to
a “many small programs” approach (zyBooks alone reports over
200 schools; many more exist). Thus, not only do we want insight
into our students’ programming process, but we want that for 7
programs per week, to see which they started on, how they
switched between programs, and so on. A table of statistics is too
hard for an instructor to process and loses too much information.
Thus, in 2018, we began developing a script to process the log files
from the popular auto-grader that we use and convert to a
graphical representation that we call “workflow charts”. We have
found those charts provide instructors with tremendous insight,
allowing a quick determination of how a class is doing (starting on
time? spending sufficient time?), but also to quickly see a

This work is licensed under a Creative Commons Attribution International 4.0
License.

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8062-1/21/03. https://doi.org/10.1145/3408877.3432551

Paper Session: Code Analysis SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

349

https://doi.org/10.1145/3408877.3432551
https://doi.org/10.1145/3408877.3432551
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3408877.3432551&domain=pdf&date_stamp=2021-03-05

particular student’s effort (such as when a student comes to office
hours for help, or is requesting an extension) -- and even to detect
some cheating cases. We even pull up the charts for the class and
use them as a springboard to dive into a particular student’s code
(if they offer). Students find the workflow charts “cool”, and we
believe such charts, if used properly in a class, may even reduce
some cheating in the future due to showing students that
instructors can see their effort.

2 Background

2.1 Many small programs (MSP) approach
In 2018, we switched our CS1 course to use a many small
programs (MSP) approach. An MSP approach involves assigning
students multiple small programming assignments, for example 5-
7, each week instead of only one large programming assignment
(OLP) each week. For our CS1, we chose to assign students 7
programming assignments worth 10 points each, and only
required them to earn 70% of total points for full credit. We
switched after seeing research [9, 10] that an MSP approach yields
benefits such as earlier starts, reduced anxiety, increased
confidence, the ability to switch to another program if stuck, better
exam performance, and less attrition, with students shown to
easily transition to larger programs later.

2.2 Program auto-grader
We used an interactive learning system (textbook + auto-graded
homework) with a built-in program auto-grader by zyBooks. The
auto-grader is easy to use; it takes us an average of 30 minutes to
create a new programming assignment, with no special training.
The auto-grader provides students immediate score feedback. The
auto-grader has an optional built-in development environment
(IDE), and we require students to use that IDE for all MSP
programming.

2.3 Data collection
To collect the data required to generate our workflow charts, we
obtained from zyBooks log files for all lab activities. The file was in
csv format and contained all develop and submit runs for every lab
activity in our class. A develop run is when a student tests their
code in the built-in IDE without receiving a grade. A submit run is
when the student submits their code for grading. Each student
activity entry contains metadata such as the title of the lab
activity, the user ID, a timestamp, a link to the source code for that
run, and for submit runs also contains a score, a max score, the list
of test cases including which were passed or failed.

2.4 Time spent calculations
An integral calculation for all workflow charts is the time spent by
students on each programming assignment. To calculate time
spent, we gathered all student activity and calculated the
difference between timestamps. Each difference was then summed
together to yield a final calculation of the total time spent. Note,
that if the difference between two timestamps exceeded 10-
minutes, we excluded the time from our calculations to be

conservative as the student likely took a break or went to work on
something else. Furthermore, we cannot capture the time a student
spent working before their first activity. As such, our data is likely
an understatement.

3 The evolution of our workflow charts
Our motivation for creating these representations was to
understand how students were interacting with the MSPs. Based
on end-of-the-quarter grades, we had seen that students were
earning good grades and doing well on exams, but we lacked
insight on questions like: How much time are students working on
MSPs each week? What days did they work? Were students doing
MSPs in the order we listed them, or were they jumping among
them? How often were they doing develop runs versus submit
runs?

We decided to pursue a graphical representation of the data, to
gain quick and concise insights into student effort on weekly
MSPs. We used a Gantt chart as the initial motivation behind
developing our workflow charts. A Gantt chart is a visual view of
tasks scheduled over time [11]. Such a chart highlights important
information like the start of a task, the end of a task, and the time
spent per task in a single view.

Note that some figures in Section 3 that show the evolution of our
charts may differ in example as we do not have records of all
previously used iterations.

3.1 Version 1 -- Calendar view
Figure 1 shows Version 1 of our workflow chart. Our initial
thought was to display the data using a weekly calendar view to
see data on all weekly lab activities for each student each week.

Figure 1: Version 1 of the workflow chart. An expanded
calendar view with lab activities on the y-axis and days on
the x-axis. Horizontal lines added to indicate when students
worked.

As we were using the MSP approach, we had assigned students 7
lab activities per week. On the workflow chart, the lab activities

Paper Session: Code Analysis SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

350

are listed on the y-axis in ascending order and dates for the week
are listed on the x-axis in ascending order. Horizontal lines are
added to indicate the times students spent working on each lab
activity. Each chart has a title with the student ID (anonymized)
and the week the chart was generated for.

Unfortunately, upon initial inspection, the data is very hard to read
and at a quick glance, it may even seem like the student did no
work for the given week. In actuality, the data is present, but since
the chart covers 7-days, the time increments in which the student
worked are so small in comparison that they are almost not even
visible on the chart. Using the calendar view did not work as we
intended, and we needed a better way to represent the data in a
compressed way.

3.2 Version 2 -- Compressed chart
For Version 2, we needed a better way to represent the data for a
given week. We decided to compress the chart by now considering
total time spent during the week instead of spreading out the data
across the entire week as in Version 1. We still displayed the lab
activities on the y-axis, but switched to showing total time spent
on the x-axis. Horizontal lines were still used to indicate time
spent per each lab activity. Additionally, we put a percentage
above each horizontal line to indicate the highest score a student
earned after that session of working on that lab. Each chart has a
title that summarizes data for the week, including the student’s ID,
the total time spent working on lab activities for the week, and the
total number of develop runs (D) and submit runs (S). Each chart
is read from left to right and from top to bottom. Figure 2 shows
Version 2 of the workflow chart.

Figure 2: Version 2 of the workflow chart. Compressed chart
only considering total time spent represented by a black
horizontal line per lab activity and a completion score above.

Version 2 of the workflow chart provided insight into a students’
workflow (how they worked on each lab activity during the week),
but we soon found ways to get more information onto the chart
while maintaining readability.

3.3 Version 3 -- Color / Score per submit run /
Statistics per lab

Version 3 of the workflow chart improved clarity and readability.
We added color to distinguish data for each lab activity, so when
looking at charts for multiple students, an instructor could get a
quick sense of which lab took most time -- if seeing a lot of orange,
an instructor might know that lab 6 was the most time consuming.
Next, we added labels on the right of the chart to summarize data
for each lab activity, including the lab’s final score, the time spent,
and the total numbers of develop and submit runs. We added a
grid to enable more accurate readings. Finally, we made a change
to the way we considered student work sessions throughout the
week. This change is represented in the chart by some horizontal
lines having multiple final score percentages listed above them.
This will be explained later. The title of each chart was changed
for improved readability. Figure 3 shows Version 3 of the
workflow charts.

Figure 3: Version 3 of the workflow chart, adding color,
summary statistics on the right, gridlines, and more submit
scores.

Version 3 of the workflow chart required many design
considerations. First, when thinking about how to clearly denote
which data corresponded to each specific lab activity, we thought
of using color, line styles, or a combination of both. Different line
styles proved to yield a cluttered appearance, and some were hard
to distinguish. They also didn’t enable easily seeing the most/least
time-consuming labs across multiple students. A tradeoff here
relates to some people potentially having less ability to distinguish
color, and loss of info when printed in black and white. A second
design consideration was related to the grid. Adding the grid
added more clarity to the chart, but in earlier iterations, the grid
also decreased data visibility. We initially set the grid color to be
too dark and also with a higher volume of tick marks that were
unnecessary. After testing different color shades and tick mark
frequencies, we chose a lighter color for the grid and reduced the
tick marks to achieve the accuracy we wanted.

Paper Session: Code Analysis SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

351

Finally, we changed the way we thought about how to represent
students working on each lab activity, referred to as student work
sessions. At first, we considered a student work session to end
when the student began working on a different lab activity i.e.
submitted code for lab 1 and then developed code for lab 2. Upon
deeper analysis, we recognized a scenario where students would
begin working on a lab activity, leave to take a break, and then
return to work on the same lab activity. We consider this scenario
important to denote, so we considered a work session to also end
if the time between two activities was more than a 10-minute
threshold. We thus showed the score at the end of every session,
which is why the figure above shows multiple 60% values on a
single bar of lab 2, for example. This distinction does lead to some
clutter if the student has many work sessions back-to-back (as can
be seen in Figure 3 for lab 7), but we felt the distinction helped
instructors to better understand student workflow patterns.

3.4 Version 4 -- More develop/submit details
Version 3 provided the foundation for all the following updates of
our workflow chart. As we used these charts for analysis in our
teaching each quarter, we noticed a lack of insight on student
behavior during each work session. Version 3 summarized data for
each lab activity at the end of the week, but not during the week.
As such, in Version 4, we wanted our chart to add further insight
into student develop and submit runs during work sessions. To
accomplish this, we added indicators on the time spent data lines
for when a submission took place. These are indicated in a few
different styles as seen in Figure 4 and Figure 5.

Figure 4: Version 4a. Used large filled in points to indicate a
submit run, added text to summarize student activity per
work session, minor adjustments to chart labels.

We also added text data on the number of develop and submit
runs during each work session underneath each time spent line.
Finally, we made minor adjustments to the labels on the right of
the chart such that each feature was on it’s own line for additional
clarity.

Version 4a shown in Figure 4 uses large filled in points to indicate
submit runs. Using this indication style made it easy to see submit
runs, but added clutter due to the size of the points. Also, this
indication did not show develop runs.

Another approach we took, seen in Figure 5 Version 4b, uses a
small point with a tail and a character label listed below to denote
a develop or submit run. A develop run is indicated with the ‘D’
character and a submit run is indicated by the ‘S’ character. By
reducing the size of the point and adding a character, the clutter
was lessened and the distinction was clear. Unfortunately, with the
additional markings, it became difficult to visually separate an ‘S’
from a ‘D.’

Figure 5: Version 4b. Used small points with a ‘S’ label to
indicate a submit run and a ‘D’ label to indicate a develop
run. Other updates are similar to Figure 4.

We also experimented using other shapes as indicators like
squares, diamonds, stars, ‘X’s,’ and open points, but none worked
out. In both versions, the text indications for total develop and
submit runs below the data lines were helpful. There were some
situations where this data would overlap, making some content
difficult to read, but this didn’t happen very often.

3.5 Version 5 -- Tick marks for develop runs
and submit runs

In Version 5, we solved how to effectively display develop runs
and submit runs during weekly work sessions. Instead of using
points to indicate a develop run or a submit run, we used small
tick marks: A tick above the line indicates a submit run and a tick
below the line indicates a develop run. This style of indication is
simple and quickly understood. Even with a high density of
student activity, the chart was still readable. Figure 6 shows
Version 5.

There was one other design consideration we tested for Version 5.
Before putting straight tick marks above and below the data line,
we used straight and diagonal tick marks to indicate a develop run
and submit run respectively. This worked when the density of

Paper Session: Code Analysis SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

352

activity was low, but became difficult to differentiate a straight
tick from a diagonal tick when the density was high.

Figure 6: Version 5. Added tick marks below the time lines
to indicate develop runs, and tick marks above the time
lines to indicate submit runs.

3.6 Version 6 -- Pivot indicators
Version 6 is the current version of the workflow chart that we use
today. A final addition is the ability to identify pivots. One unique
benefit of the MSP approach is the ability to pivot, which is when
a student switches from one lab to another before finishing the
first lab. If a student gets stuck on one lab, they can just move on
to another, often coming back to finish the earlier lab (or having
gotten help in the meantime). We added arrows on the workflow
chart to indicate when pivoting occurs. Figure 7 shows Version 6
of our workflow chart.

Figure 7: Version 6. Added arrows to indicate pivots.

In Figure 7, the first pivot can be seen on lab 1 since the student
only scored 80% and then switched to work on lab 2. Pivoting
arrows are useful if a teacher is interested in them, but adds a
small amount of clutter. As such, we added a flag to control
generation of these pivot arrows on the workflow chart.

4 Current uses and discussion
Version 6 of the workflow charts has the information we desired,
available at a quick glance. We can see summary data for the
week, specific data for each lab activity, and can even see special
information like pivots. Section 4 discusses our primary uses of
these workflow charts.

4.1 Understanding student effort
From the beginning, our motivation was to create a visual
representation of data to understand student effort on our MSPs.
These workflow charts help us to quickly and accurately see lots
of meaningful data in a single location. We can pick any week of
the quarter and any student and see why they may be struggling
or even performing better than other students in the class. We
have already used these charts for many analyses regarding
research, individual student considerations, and to generally
improve our MSPs and our CS1.

4.2 Detecting unallowed collaboration
In 2017, we began allowing our students to collaborate when
working on lab activities. We allow students to collaborate only if
they do a majority of the work and they indicate on their
submissions who they worked with. We have a variety of ways to
ensure each student is submitting ethical work, and among them
are using these workflow charts to visually notice any
irregularities. Recently, we started showing students these
generated charts and having them call out any charts that look
‘weird’ as a participation activity.

4.3 Student classifications
One other way that we’ve begun using these charts is to create
student classifications to help us identify students that may be
struggling. In a 10-week quarter, we typically generate over 1,000
workflow charts. If we can use these charts to make meaningful
and accurate classifications, then we can identify struggling
students early and provide additional resources that will help them
succeed. Some classifications that we are currently using are when
do students begin working, do students complete all lab activities
in a single day or spread them out, and how much time do
students take to complete all lab activities.

4.4 Website
We are creating a website to share these workflow charts with our
students and the community. Instructors can upload the auto-
grader’s log files for a week’s labs, and the charts are automatically
generated on a new webpage. There will also be sorting
functionality integrated into the webpage so instructors can point
out key features like students who spend the most amount of time
working or students who complete the assignment with the least
submits or develops. In the future, we may investigate integrations
directly with the auto-grader so that no log file uploading is
necessary. Figure 8 shows a screenshot of workflow charts from
multiple students which will eventually be featured on a webpage.

Paper Session: Code Analysis SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

353

4.5 Future improvements
These workflow charts have evolved since 2018, but we are
considering further improvements. First, we would like to add an
indication of when students began struggling with lab activities
compared to their peers. This would make comparison analysis
easier when looking at a single week for an entire class. Second,
we would like to further develop and use the classification system
for these charts. As of now, we are using basic classifications, but
if they could be more robust and accurate, we could create
impactful intervention techniques for struggling students. Third,
we would like to incorporate the original calendar view from
Version 1. A weekly calendar view provides important data that’d
we’d like to capture if possible, so deciding on the proper way to
do so is a goal for Version 7.

5 Conclusion
We described the evolution of a graphical representation, called
“workflow charts”, of student effort on weekly many-small-
programs. We have used these charts in our teaching each quarter,
to help provide insight into our class, get a quick feel for a
particular student’s effort when they come to office hours (for
example), and even to help us decide to investigate potential
cheating when a student’s workflow chart shows almost no effort
but high scores. The paper focuses on introducing the concept of

such charts as a tool for teachers and showing the evolution of the
design; that evolution may be of interest in itself, as more
education-focused tools focus not necessarily on algorithms or
traditional considerations but rather focus heavily on design
considerations. We have found such charts quite useful in our
teaching, but we encourage future work (and plan to conduct
some ourselves) that demonstrate specific benefits, like detecting
struggling students, or reducing cheating.

REFERENCES
[1] zyBooks.https://www.zybooks.com/. Accessed: August, 2020.
[2] Gradescope. https://www.gradescope.com/. Accessed: August, 2020.
[3] Mimir Classroom. https://www.mimirhq.com/. Accessed: August, 2020.
[4] Vocareum. https://www.vocareum.com/. Accessed: August, 2020.
[5] Codelab. https://www.turingscraft.com/. Accessed: August, 2020.
[6] Pearson’s MyProgrammmingLab

https://www.pearsonmylabandmastering.com/northamerica/myprogramminglab
/. Accessed: August, 2020.

[7] Runestone.
https://runestone.academy/runestone/default/user/login?_next=/runestone/defau
lt/index. Accessed: August, 2020.

[8] BlueJ. https://bluej.org/. Accessed: August, 2020.
[9] J.M. Allen, F. Vahid, K. Downey, and A. Edgcomb. Weekly Programs in a CS1

Class: Experiences with Auto-graded Many-small Programs (MSP), Proceedings
of ASEE Annual Conference, 2018.

[10] J.M. Allen, F. Vahid, A. Edgcomb, K. Downey, and K. Miller. An Analysis of Using
Many Small Programs in CS1, ACM SIGCSE Technical Symposium on Computer
Science Education, 2019.

 [11] Gannt Chart. https://www.projectmanager.com/gantt-chart. Accessed: August,
2020.

Figure 8: Workflow charts for multiple students

Paper Session: Code Analysis SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

354

