
Paper ID #28920

Improving Pass Rates by Switching from a Passive to an Active
Learning Textbook in CS0

Ms. Dawn McKinney, University of South Alabama

Dawn McKinney, a Senior Instructor and Curriculum Coordinator for Computer Science at the
University of South Alabama, has been conducting research on Teaching and Learning for
over 23 years and has co authored over 25 papers which have been presented at SISCSE,
ASEE, FIE, XP/Agile Universe, Interna tional Conference on The First-Year Experience,
Southeastern Learning Community Consortium, Council on Undergraduate Research National
Conference, and the South Alabama Conference on Teaching and Learning. As a leader in the
university’s Team-Based Learning effort, McKinney has been awarded funds for support,
including travel, for the past seven years. She taught courses in China in 2013 and was
awarded the highest award for teaching at the University of South Alabama in 2014. During the
last three years, McKinney has participated in the Scholarship on Teaching and Learning
program supported by the University of South Alabama and has been awarded funds to use
for travel. During this time McK inney has collaborated with computer science faculty at several
institutions and has co-authored papers submitted to both SIGCSE and ASEE.

Dr. Alex Daniel Edgcomb, Zybooks

Alex Edgcomb is a Senior Software Engineer at zyBooks.com, a startup spun-off from UC
Riverside that develops interactive, web-native learning materials for STEM courses. Alex is
also a research specialist at UC Riverside, studying the efficacy of web-native content and
digital education.

Prof. Roman Lysecky, University of Arizona

Roman Lysecky is a Professor of Electrical and Computer Engineering at the University of
Arizona. He received his Ph.D. in Computer Science from the University of California,
Riverside in 2005. His research focuses on embedded systems with emphasis on medical
device security, automated threat detection and mitigation, runtime adaptable systems,
performance and energy optimization, and non-intrusive observa tion methods. He is an author
on more than 100 research publications in top journals and conferences. He received the
Outstanding Ph.D. Dissertation Award from the European Design and Automation As sociation
(EDAA) in 2006, a CAREER award from the National Science Foundation in 2009, and seven
Best Paper Awards. He is an inventor on one US patent. He has authored eight textbooks on
topics in cluding C, C++, Java, Data Structures, VHDL, and Verilog, and he has contributed to
several more. His recent textbooks with zyBooks utilize a web-native, active-learning approach
that has shown measurable increases in student learning and course grades. He has also
received multiple awards for Excellence at the Student Interface from the College of
Engineering at the University of Arizona.

Prof. Frank Vahid, University of California, Riverside

Frank Vahid is a Professor of Computer Science and Engineering at the Univ. of California,
Riverside. His research interests include embedded systems design, and engineering
education. He is a co-founder of zyBooks.com.



c American Society for Engineering Education, 2020

Improving Pass Rates by Switching from
a Passive to an Active Learning Textbook in CS0

Abstract

Undergraduate degree programs in computer science have struggled with student retention and
outcomes; some solutions focus on improving introductory courses, such as CS0. This paper
reports on one such approach: Switching from a passive to active learning textbook, which uses
animations, learning questions, and simulators, along with text and figures. The Fall 2017
offering had 73 students and used a passive textbook and a standalone flowchart simulator. The
Fall 2018 offering had 76 students and used an active learning textbook, including integrated
auto-graded homeworks and integrated flowchart simulator. The primary change in the course
was to the textbook; the courses had the same experienced instructor; similar quizzes, exams, and
homeworks; and similarly-prepared students based on ACT scores and previous programming
experience. Various metrics were measured; most crucially, the pass rate significantly increased
(p-value = 0.04) from 78% (57 of 73 students) in Fall 2017 to 91% (69 of 76 students) in Fall
2018. In Fall 2017, 10 of the 16 students that did not pass changed majors, whereas only 2 of the
7 did in Fall 2018. The course grades increased from 84 out of 100 points in Fall 2017 to 87 in
Fall 2018; the largest categorical increase (p-value < 0.001) was homework from 71 out of 100
points in Fall 2017 to 88 in Fall 2018. Students were surveyed about the course; significant
findings turned out to be that Fall 2018 students found the homework to be clearer but harder
than Fall 2017 students.

1. Introduction

Students struggle in introductory programming courses, often due to lack of good
problem-solving skills and lack of preparation. Many institutions have implemented and adjusted
courses to address this deficiency [1] - [4]. The CS Department in the School of Computing at
the University of South Alabama has been searching for an appropriate first course for CS
majors to prepare them for the programming courses. In response to observed student struggle
with problem-solving and programming concepts, the department decided to focus on such skills
in the first course. In Fall 2016, the designers of the course used a free tool, which allowed
students to create runnable flowcharts to test their algorithms and an accompanying textbook
based on the same tool. The students enjoyed the use of the tool, but the instructor and a teaching



assistant had to grade each assignment by hand because there was no feedback mechanism
integrated into the tool. With 60 students, providing students with high quality, timely feedback
across many assignments was not feasible. So, only a few assignments were graded, typically
with a one-week turnaround. Furthermore, the tool was designed for non-majors, and students
reported dissatisfaction with the low level of feedback for their efforts, even though the tool does
a good job of visually demonstrating algorithms with flowcharts. Without timely feedback,
students felt low incentive to practice. The class was not able to progress deep enough into
programming concepts, and the students did not do as well as expected on exams and homework.

The course designers searched for an alternative. The CS1 instructor was dissatisfied with the
passive learning textbook in the CS1 course that teaches Java. The textbook was expensive and
seemed to be rarely used by students. Students were not getting the feedback needed on
homework to improve their programming skills and were not well prepared for CS2. During the
Fall 2017 semester, an active learning textbook was used in the CS1 course. The instructors of
the course compared the success rates and attitudes of students before and after the use of the
active learning textbook in CS1 [5]. As shown in Figure 1, the semester using the active learning
textbook had more As and Bs, and fewer DFWs than the semesters using the passive learning
textbook. Course evaluations for the active learning textbook version of the CS1 course indicated
the students were satisfied with the textbook.

Figure 1: CS 1 (Java) student outcomes of the last 4 semesters with passive learning textbook
(156 students total) and first two semesters with active learning textbook (81 students).

The success in CS1 led to the attempt to use an active learning textbook in CS0, which is the
focus of this paper. In Spring 2018, the CS0 instructor adopted an active learning textbook,
which teaches programming concepts using a simple pseudocode language with corresponding
flowcharts, shown in Figure 2. The active textbook provides several benefits: (1) students get



immediate feedback on ample assignments and activities, (2) a single source for learning and
practice material, (3) active learning and visual material, (4) low-cost, (5) the instructor is
provided with reports that can be used for grades.

Figure 2: Pseudocode and corresponding flowchart. The code on the left defines the same
program as the flowchart on the right.

This paper compares a passive textbook and an active learning textbook in the context of a CS0
course across two semesters during the same term of the year (Fall 2017 and Fall 2018), with the
same experienced instructor, and all other course items kept as similar as possible. The paper
analyzes the effects on student outcomes and perspectives. The paper begins with the
background work, gives a course overview, then describes the change in the course (the
textbook), participants, design and methods, results, and discussion.

2. Background

Introductory programming courses commonly struggle with low student success rates [6], [7].
Math has long been a determining factor for student success [8], [9], but others have found that
this is not always the case [10]. Causes for low student success rates have been identified which
range from time-management and ability, to commitment level and motivation [11] - [13]. Many
approaches have been taken by universities, including ours, to remedy this issue, such as
changing programming languages [14], focusing on student motivation [15] - [17], implementing
team-based learning [18] - [21], adopting Agile methodologies [22], and a host of others.
At our university, we discovered that students were not benefitting from the textbook, and were
not getting enough practice and timely feedback to satisfy their needs for success. Further,
students expect more use of technology and the Internet and are not interested in expensive,
heavy, and lengthy textbooks. During Fall 2017, we found an active-learning textbook to replace
a static textbook for our CS1 course which is completely online, inexpensive, and provides
practice and immediate feedback for the students. We compared student success rates over
several years to the success rates after adopting the new active-learning experience and the
encouraging results [5] led to the adoption of the experience for our CS0 course the following
semester (Spring 2018).



We collected preliminary data in Spring 2018 and made a few improvements in preparation for
this study, which compares student success rates in the CS0 course from Fall 2017 (traditional
passive textbook experience) to Fall 2018 (active-learning textbook experience) and will show
that the active-learning textbook experience resulted in improved student success and attitudes
about the course.

3. Course overview

The course in this study was an Introduction to CS (CS0), which was required for CS majors and
3 semester-hours, and used Team-Based Learning (TBL). Fall 2017 had 73 students and Fall
2018 had 76 students. The course focused mostly on problem-solving and the algorithmic
process, and was used as a ramp for the next course (CS1), which is the first programming
course. High ACT Math students are permitted to take both CS0 and CS1 courses concurrently
since the introductory course (CSO) also includes a brief computer history, data representation,
binary numbers, speakers from the CS department who share their research, and the students
explore their interests in CS by completing a semester project which culminates with a team
presentation.

To develop programming problem-solving skills, students practice writing pseudocode and using
flowcharts to solve simple problems which make use of the basic programming constructs, e.g.,
sequential, decision, and repetition structures. Programming concepts such as identifiers, data
types, variables, assignments, arithmetic operations, relational and logical operators, and
functions are introduced and used by students to complete exercises.

3.1 Team-based learning

Team-Based Learning (TBL) [20] is a pedagogy adopted by the University of South Alabama as
an initiative for improving teaching and learning. Students in TBL courses are assigned to
permanent teams between five and seven in size. Four to six major topics are covered with
accompanying reading and assignments that are given in preparation for short multiple-choice
quizzes for each topic. The quiz, known as a RAT (Readiness Assurance Test) is first taken by
each individual (iRAT) and immediately followed by completing the same quiz by the entire
team (tRAT). In our course, the iRAT is completed online and an immediate feedback tool is
used for the tRAT. Each of the 4-6 RATs is followed by discussion and clarification of concepts.
This process is known as a RAP (Readiness Assurance Process). Following a RAP, teams work
together on in-class activities on each major topic and evaluate their team members [21].

3.2 Grades

Grades in the course were based on participation and attendance (5%), individual readiness
assurance tests (10%), homework (15%), exams (25%), team project (10%), team evaluations
(15%), and team readiness assurance tests (20%).



3.2.1 Individual readiness assurance tests

Individual Readiness Assurance Tests (iRATs) are short tests (under 10 minutes; 10 multiple
choice questions) given at the beginning of the class period when homework (reading with
practice) is due. iRATs are designed to be a quick check to make sure students are doing the
homework in order to be prepared for the team activities. Figure 3 is an example iRAT question
involving logical operators. The iRATs are given in an online environment so the instructor has
immediate feedback about how well the students did. Immediately following the iRAT, the tRAT
uses scratch off forms so teams know if their answers are correct.

Figure 3: Example Readiness Assurance Test (RAT) question.

3.2.2 Individual homework

Homework was assigned in preparation for each of the 5 major topics. Each major topic covers
1-3 chapters. In Fall 2017, students were assigned reading from a textbook and were required to
complete a few short exercises (which had answers available) in order to test their
understanding
of the reading. There was not a way to verify that students read the textbook, and the textbook’s
exercises were not graded. However, since a RAT was given on the due date of homework
assignments, the students did have an incentive to read.

Five graded homework challenges were also given, which, with the passive learning textbook,
involved the use of a free flowcharting tool that was supported by the textbook. Students
completed the flowcharts and uploaded their work to an online system where a grader manually
graded each student’s work using a rubric provided by the instructor. The rubric included 4
categories: Readable and understandable, correct flow of control, correct use of identifiers, and
correct output. Each category had 4 tiers: Good (25 points), fair (20 points), poor (15 points), and
missing (0 points). For readable and understandable, a good answer was a solution with three
components: An algorithm that was readable, understandable, and using indentation where
needed. A fair was missing one component; poor was missing two components; and missing had
no components. Each category followed a similar pattern.

In Fall 2018, the same five graded challenges were given, but the students used a Coral simulator
instead of the flowcharting tool. The simulator gave the students immediate feedback for their
efforts allowing students to make corrections. Since the simulator required proper indentation



and some rules for syntax, the students learned to be exact in the design of their solutions. Exact
output was also required, which further reinforced the importance of the specificity of
problem-solving and programming. The active learning textbook was introduced to the course in
the Spring 2018 offering, between the offerings compared in this paper, Fall 2017 and Fall 2018.

3.2.3 Exams

A midterm (students allotted 65 minutes) and final exam (students allotted 120 minutes) were
given. The exams included multiple choice (35 questions on the midterm; 45 on the final along
with team evaluations). In both Fall 2017 and Fall 2018, the midterm also included a free
response question.

4. Changes in the course

The only change in the course offerings was the texbook and associated simulator. Everything
else stayed the same: Grading policies, course point breakdown, topics, number of exams,
assignments, term of the year, class size, and experienced instructor. In Fall 2017, a traditional
print textbook was used, along with a flowchart building tool. In Fall 2018, an active learning
textbook with an integrated simulator was used.
The passive learning textbook was Prelude to Programming, Concepts and Design, Sixth Edition
[23]. The textbook used flowchart diagrams and textual explanations to describe core
programming concepts. The textbook was accompanied by a standalone flowchart interpreter,
RAPTOR [24]. The textbook had exercises and problems at the end of each chapter and
demonstrations and examples on how to use the interpreter. The interpreter enables a user to
build a flowchart by inserting, connecting, and editing nodes. The user can layout the nodes
however desired. The textbook included explicit instructions for how to use the interpreter, as
well as how to build particular flowcharts as examples.

The active learning textbook was Fundamental Programming Concepts [25]. The textbook
included animations to show dynamic concepts, learning questions with explanations, and tools
with immediate feedback, as well as, text and figures. Such active learning textbooks have been
shown to improve student learning in introductory programming courses [26], [27]. Student
completion of activity is recorded, and instructors can see that completion. The textbook
introduces basic programming concepts, including representing data as bits, problem solving,
and programming. The textbook introduces programming concepts via the Coral programming
language [28]. The language is a textual and flowchart language (shown in Figure 2), wherein a
user writes textual code that is auto-generated into a flowchart. The user can visually see the
textual code and flowchart executing, as well as see variables update in memory. The language's
syntax is very simple, supporting only constructs for basic programming concepts: Input/output,
variables, branching, loops, arrays, and functions.

The passive learning textbook had homework in a separate document; homework was
hand-graded. The active learning textbook had the homeworks integrated into an auto-grader
with immediate feedback for students.



5. Participants

The participants were students in the Fall 2017 and Fall 2018 offering of an introductory
programming course at a research university. The Fall 2017 offering had 73 students, and the
Fall 2018 offering had 76 students. Most participants were freshmen, Computer Science majors,
and traditional students with an occasional transfer or non-traditional student.

To get a sense for the student's level of preparation, we looked at ACT Math scores (taken prior
to entry into the university; most students were freshmen) and survey questions. The average
ACT Math score for Fall 2017 students was 23.6, which was not significantly higher (p-value =
0.48) than the average score for Fall 2018 students at 23.0. Participants were given a survey at
the end of the third homework with 3 questions related to prior programming experience. 57% of
Fall 2017 participants vs 28% Fall 2018 (p-value = 0.02) reported having taken a prior
programming course. On a scale of 0 (no experience) to 5 (a lot of experience), Fall 2017
students reported 1.3 vs Fall 2018 at 0.9 (p-value = 0.23). 50% of Fall 2017 students reported
taking a concurrent programming course vs 49% of Fall 2018 students (p-value = 0.91). The
offerings seem to have similar levels of prepared students.

6. Design and methods

The two course offerings were compared via student outcomes and perspectives. Including: ●
Pass rate: The number of students who received a course grade of A, B, or C divided by the
number of students that were enrolled.
● Course grades: Overall course grade and each grade category: Homework, attendance,
quizzes, midterm exam, and final exam. Students who did not take the final were excluded. ●
Survey responses: The same survey was given after the 3rd, 4th, and 5th homework (there
were 5 homeworks). The first survey question asks how long the student spent on homework;
the other questions were on the scale of -3 (strongly disagree) to 3 (strongly agree). An
average question score was computed across all surveys by first averaging each student's
response per survey, then combining the 3 surveys per offering. For significance testing,
survey responses were combined by Z-scoring each survey per question, then concatenating
the question Z-scores.
● Course evaluation responses: Both offerings had the same course evaluation given at the end

of the semester. 4 items on the course evaluation were related to the change in textbook.

For pass rate, significance was computed with Fisher's exact test.

For course grades and survey responses, Bartlett’s test was performed for each metric. If Barlett's
test yielded p-value < 0.05, then variances were considered unequal and the significance value
between offerings was computed via Welch's t-test. Otherwise, variances were considered equal,
and the significance value was computed via Student's t-test. Either way, significance value was
computed with two-tails. Further, a Bonferroni correction was applied to the interpretation of the
significance value due to multiple tests. For course grades, a p-value < 0.008 (= 0.05 / 6 tests) is



interpreted as statistically significant. For survey responses, a p-value < 0.005 (= 0.05 / 10 tests)
is interpreted as significant.

R was used for all analysis [29]. The Internal Review Board approved this study.

7. Results

The pass rate in Fall 2017 (passive learning textbook) was 78% (57 of 73 students), which was
significantly lower (p-value = 0.04) than 91% (69 of 76 students) in Fall 2018 (active learning
textbook). Of the students who did not pass, 10 changed majors in Fall 2017, and 2 changed
majors in Fall 2018.

Course grades are shown in Table 1. Fall 2018's homework average was 88 out of 100 points,
which is interpreted as significantly higher (p-value < 0.001) than Fall 2017's homework average
of 71. Of the grade categories, homework most utilized the textbooks and respective simulators.
The other grade categories are not interpreted as significantly different because the p-values are
not less than the Bonferroni correction of 0.008. The offerings had unequal variances for
homework and attendance, and equal variances for quizzes, midterms, finals, and overall. Note
that students who did not take the final (such as dropped students) were not included in the
grades comparisons.

Table 1: Course grades, including each category, for Fall 2017 and 2018. Homework was
significantly different, so is bold. To address p-hacking, we used a Bonferroni correction, so

instead of significance being < 0.05, significance must be < 0.008.

N Homework* Attendance* Quizzes Midterm Overall

Fall 2017 62 71% 94% 75% 81% 84% 84%

Fall 2018 70 88% 90% 70% 79% 78% 87%

p-value < 0.001 0.08 0.25 0.22 0.02 0.05

* indicates significance test for unequal variance used.

A note regarding Table 1: "p-hacking" is a growing concern among researchers today. To be
clear, the data presented in this paper is not p-hacked. The paper presents all the measured items,
not just those of significance. Furthermore, the paper uses a standard technique, called a
Bonferroni correction, that imposes a higher standard on significance due to multiple items being
presented (versus a hypothesis with a single measured item). In particular, p must be 0.001, not
just 0.05, to be considered significant.

Some Finals' questions covered concepts not discussed in both offering's textbooks; in fact, some
questions in the Fall 2018 Final exam asked about terms not used in the Fall 2018 textbook



(rather, these questions were vestiges from Fall 2017). When such questions were excluded, Fall
2017 students averaged a 78, and Fall 2018 students averaged 87.

As seen in Figure 4, Fall 2018 course grades had more As and Bs, and fewer Cs and DFWs than
Fall 2017.

Figure 4: CS0 student outcomes with a passive (Fall 2017) and active (Fall 2018) learning
textbooks.

Survey questions are shown in Table 2. Fall 2018 (active learning textbook) students responded
that homework instructions were clearer (0.9 or slightly agree vs 1.8 or agree) than Fall 2017
(passive learning textbook) students responded, which is significant because the p-value of 0.003
is less than Bonferroni correction of 0.005. Fall 2018 students reported the homework being
more difficult (0.4 vs 2.0) than Fall 2017 students reported, which was significant (p-value <
0.001). Fall 2018 students reported having more difficulty writing the program for the solution
thought of (0.2 vs 1.1) than Fall 2017 students reported, which was significant (p-value = 0.001).

The course evaluation items were on a scale from 1 (strongly disagree) to 5 (strongly agree). The
items were: Useful feedback provided (3.7 Fall 2017 vs 3.9 Fall 2018; p-value = 0.29),
exams/assignments match course material (4.1 vs 4.2; p-value = 0.71), assigned materials
appropriate (4.1 vs 4.1; p-value = 0.91), and course overall (3.8 vs 3.9; p-value = 0.45). No item
was significantly different.

Table 2: Survey questions with average scores. With Bonferroni correction, significance is
p-value < 0.005. Except first question, scale of -3 (strongly disagree) to 3 (strongly agree) used.

Question Fall 17
averag
e

Fall 18
average

p-value

In total, how long did the homework take to complete? (hours) 2.5 1.8 0.288



I enjoyed the assignment.* 1.0 1.1 0.647

The homework was an appropriate amount of work. 1.5 1.8 0.596

I was able to solve the homework.* 1.8 1.6 0.174

The homework instructions were clear.* 0.9 1.8 0.003

The homework was difficult.* 0.4 2.0 < 0.001

The textbook contributed to my success on the homework. 0.6 1.1 0.471

I felt prepared for the homework. 1.1 0.9 0.127

I encountered a lot of program bugs while solving the homework. 0.4 0.1 0.706

I had a hard time writing the program to match the
solution I thought of.

0.2 1.1 0.001

* indicates significance test for unequal variance used.

8. Discussion

This paper compared passive and active learning textbooks in the context of a CS0 course across
two semesters. The paper analyzed the effects on student outcomes and perspectives. Overall,
our results suggest that students using an active learning textbook had significant increases in
pass rates. These findings have important implications for CS instructors of introductory courses
and CS departments, who are trying to improve pass rates and retention. This paper is the first to
compare passive and active learning textbooks in a CS0 course that focuses on teaching
programming concepts via pseudocode and flowcharts. The results are consistent with past
literature comparing passive and active learning textbooks in CS1 and other contexts.

The pass rate increased significantly from 78% to 91% after switching to an active learning
textbook. Such pass rates likely have implications for retention, as evidenced by an analysis of
students who failed the course: Only 2 of 7 students (29%) changed majors after the active
learning textbook course, whereas 10 of 16 students (63%) changed majors after the passive
learning textbook course. Such improvements are encouraging, as many CS departments are
struggling with retention issues, including the authors' own CS departments. Simply changing to
an active learning textbook is not sufficient to solve retention issues; there is no silver bullet in
education, but such a change may be consistent with department goals.

Course grades improved modestly, with large improvements in the homework scores and modest
decreases in the exam scores. The Fall 2018 final exam included some questions on terms not
used in the Fall 2018 textbook. Also, both final exams included questions on concepts not
covered in both textbooks. When such questions were excluded, Fall 2017 students averaged a
78, and Fall 2018 students averaged 87. Fall 2018 was just the second offering after switching



textbooks, so some kinks were still being worked out, whereas multiple terms had used the same
textbook prior to Fall 2017, thus presumably more kinks were worked out.

Students who did not take the final exam were excluded from the grade analysis. Such students
tend to have dropped the course or already had a failing grade (so no point in taking the final
exam). However, Fall 2018 had more passing students, so more students who may have decided
not to take the final exam in 2017 instead did take the Final in 2018. This is a critical point for
instructors to expect: When fewer students drop the course, overall grades are likely to decrease
because the students who would have dropped, but did not, are likely to have lower than average
course grades.

With the active learning textbook, homework grades increased significantly, while students
reported less time spent and the homework being more difficult. Both offerings had the same
homework by the instructor and students used the flowchart simulator associated with the
respective textbooks. However, the active learning homework was auto-graded with immediate
feedback, whereas the passive learning homework was hand-graded with delayed feedback
(about a week). Auto-grading let the student know the current score immediately, so students
may have felt encouraged to continue trying, which may explain both the increased homework
grade and difficulty. Also, students wrote pseudocode to solve the active learning homeworks,
whereas students directly built a flowchart for the passive learning homeworks. Building a
flowchart may actually be easier or more intuitive for new CS students than writing pseudocode,
as evidenced by the proliferation of block-based and flow-based languages for younger students.
However, industry languages are text-based, so having CS students write pseudocode may be
beneficial for student outcomes in subsequent courses, like CS1, and retention in the long run.

9. Limitations and future work

This paper describes a cross-semester naturalistic study of an introductory CS course. In such
analyses, controlling potentially confounding factors is hard. For example, students are not
randomly assigned to course offerings, but rather assigned by the term that the student chose
to
take the course. However, such factors are likely mitigated by comparing two offerings of the
same course at the same university, exactly one year from each other with the same experienced
instructor who modified a few course items. A future study might include multiple courses from
different universities to help mitigate confounds.

There are many differences between passive and active learning materials, which makes
pinpointing the specific cause of improvement challenging. For example, the difference in
perceived homework difficulty may have been caused by an auto-grader vs hand-grader, or
immediate feedback vs delayed feedback, or writing pseudocode vs building a flowchart, and so
on, or just the fact the textbook changed.

The survey helped identify that the difficulty was with writing the solution (rather than thinking
of the solution). However, more might be learned about this difficulty. For example, a future



survey might include a question like: I had a hard time coming up with a solution to the
homework.

An interesting aside: We adjusted CS0 and CS1 enrollment policy in Fall 2019 to only allow
students to take one course at a time, so Fall 2019 CS0 only consisted of underprepared
students. This adjustment improved student perceptions of CS0, and enabled the instructor to
focus specifically on problem-solving, which is the core skill taught in our CS0. Fall 2019 CS0
students again reported satisfaction with the active learning textbook.

10. Conclusion

In a CS0 course teaching core programming concepts via pseudocode and flowcharts, switching
from a passive (73 students) to active learning textbook (76 students) resulted in increased pass
rates (78% to 91%; p-value = 0.04) and fewer changes out of the CS major for non-passing
students (10 students vs 2 students). Overall course grades increased modestly, but homework
grades increased significantly (71% to 88%; p-value < 0.001). Interestingly, students with the
active learning textbook reported the homeworks being significantly more difficult, but the
students actually spent a bit less time on homework and felt the instructions were much clearer,
which makes sense because immediate grading feedback makes clear that one's program has
mistakes. Such findings are relevant to CS instructors and departments, as many universities
struggle to increase retention and pass rates in lower-division CS courses, particularly
introductory courses.
References

[1] Reynolds, J., R. Adams, R. Ferguson, and P. Leidig. Programming in the IS Curriculum: Are
Requirements Changing for the Right Reason? Information Systems Education Journal, 15(1),
80, 2017.
[2] Rolka, C. and A. Remshagen. Showing Up Is Half the Battle: Assessing Different
Contextualized Learning Tools to Increase the Performance in Introductory Computer Science
Courses. International Journal for the Scholarship of Teaching and Learning, 9(1), n1, 2015.
[3] Uysal, M.P. Improving First Computer Programming Experiences: The Case of Adapting a
Web-Supported and Well-Structured Problem-Solving Method to a Traditional Course.
Contemporary Educational Technology, 5(3), 198-217, 2014.
[4] Yagci, M. Blended Learning Experience in a Programming Language Course and the Effect
of the Thinking Styles of the Students on Success and Motivation. Turkish Online Journal of
Educational Technology-TOJET 15, no. 4: 32-45, 2016.
[5] Clark, G. and D. McKinney. The Impact of an Innovative Learning Environment for a
Programming Course. Poster presented at the Eighth Annual South Alabama Conference on
Teaching and Learning. Mobile, AL, 2018.
[6] Bennedsen, J. and M. Caspersen. Failure rate in introductory programming. ACM SIGCSE
Bulletin, 39(2), 32-36, 2007.
[7] Watson, C. and F. Li. Failure rates in introductory programming revisited. ITiCSE '14
Proceedings of the Conference on Innovation and Technology in Computer Science Education,
39-44, 2014.



[8] Jordan, K. and G. Stein. The Math Gap in an Inclusive CS1 Course. Proceedings of the 49th
SIGCSE Technical Symposium on Computer Science Education, 2018.
[9] Wilson, B. and S. Shrock. Contributing to success in an introductory computer science
course: a study of twelve factors. Proceedings of the 32nd SIGCSE Technical Symposium on
Computer Science Education, 2001.
[10] Boyle, R., J. Carter, and M. Clark. What makes them succeed? Entry, progression and
graduation in computer science. Journal of Further and Higher Education, 26(1):3–18, 2002.
[11] Corney, M., D. Teague, and R.N. Thomas. Engaging students in programming. Twelfth
Australasian Conference on Computing Education. Volume 103. 63–72, 2010. [12] Nikula,
U., O. Gotel, and J. Kasurinen. A motivation guided holistic rehabilitation of the first
programming course. ACM Transactions on Computing Education, 2011. DOI:
10.1145/2048931.2048935
[13] Teague, D. and P. Roe. Collaborative Learning – towards a solution for novice
programmers. In: Tenth Australian Computing Education Conference. 147–154, 2008. [14]
Murphy, E., T. Crick, and J.H. Davenport. An Analysis of Introductory Programming Courses at
UK Universities. The Art, Science, and Engineering of Programming 1.2: 18-1, 2017.
[15] Denton, L.F., D. McKinney, and M.V. Doran. Promoting Student Achievement with
Integrated Affective Objectives. Proceedings of ASEE Annual Conference, 2003. [16]
McKinney, D. and L.F. Denton. Houston, we have a problem: there’s a leak in the CS1
affective oxygen tank. Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education, 2004.
[17] McKinney, D. and L.F. Denton. Affective Assessment of Team Skills in Agile CS1 Labs:
The Good, the Bad, and the Ugly, Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education, 2005.
[18] McKinney, D. Where do I belong: A team-based, inquiry-based, and service-learning
approach to an introductory course in computer science. Sixth Annual South Alabama
Conference on Teaching and Learning. Mobile, AL, 2016.
[19] McKinney, D. and L.F. Denton. Developing Collaborative Skills Early in the CS
Curriculum in a Laboratory Environment, Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education, 2006.
[20] Michaelsen, L. K., A.B. Knight, and L.D. Fink. Team-based learning: A transformative use
of small groups in college teaching (1st pbk. ed.). Sterling, VA: Stylus P, 2004. [21] TBL.
http://www.teambasedlearning.org/definition/. Accessed: April 2020. [22] McKinney, D., J.
Froeseth, J. Robertson, L.F. Denton, and D. Ensminger. Agile CS1 Labs: eXtreme Programming
Practices in an Introductory Programming Course. Conference on Extreme Programming and
Agile Methods. Springer, Berlin, Heidelberg, 2004. [23] Venit, S. and E. Drake. Prelude to
Programming, Concepts and Design, Sixth Edition. Pearson, 2015.
[24] RAPTOR - Flowchart interpreter. https://raptor.martincarlisle.com/. Accessed: April 2020.
[25] zyBooks. http://www.zybooks.com/. Accessed: April 2020.
[26] Edgcomb, A., F. Vahid. Effectiveness of Online Textbooks vs. Interactive Web-Native
Content, Proceedings of ASEE Annual Conference, 2014.
[27] Edgcomb, A., F. Vahid, R. Lysecky, A. Knoesen, R. Amirtharajah, and M.L. Dorf. Student
Performance Improvement using Interactive Textbooks: A Three-University Cross-Semester
Analysis, Proceedings of ASEE Annual Conference, 2015.



[28] Coral. http://corallanguage.org/. Accessed: April 2020.
[29] R Core Team. R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria, 2019.


