Material and Energy Balances
Matthew Liberatore
zyBooks 2017

Table of Contents

1. Quantities, Units, Calcs.
1.1 Defining chemical engineering
1.2 Significant figures
1.3 Units and unit conversions
1.4 Properties
1.5 Temperature and temperature calculations
1.6 Pressure
1.7 Concentrations and fractions
1.8 Flow rates
1.9 Process unit: Pump

2. Material Balances
2.1 Process types and process units
2.2 Problem solving: 12 steps
2.3 Step 1: Process flow diagrams (PFDs)
2.4 Step 2: Defining a basis
2.5 Step 3: Systems and system boundaries
2.6 Steps 4-6: Material balance equations
2.7 Step 7: Writing extra equations
2.8 Step 8: Identifying unknowns
2.9 Steps 9-12: Solving equations and balances
2.10 Problem solving using all 12 steps for a multi-unit process
2.11 Recycle and bypass
2.12 Process unit: Distillation column
2.13 Process unit: Mixer
2.14 Process unit: Filter
2.15 Process unit: Evaporator
2.16 Process unit: Condenser

3. Reacting Systems
3.1 Balancing a chemical reaction
3.2 Excess and limiting in chemical reactions
3.3 Fractional conversion
3.4 Extent of reaction
3.5 Yield and selectivity
3.6 Reaction equilibrium
3.7 Combustion reactions
3.8 Reaction with recycle
3.9 Process unit: Reactor
3.10 Process unit: Valve

4. Solids, Liquids, and Gases
4.1 Solid, liquid, and gas
4.2 Phase changes
4.3 Properties of steam
4.4 Ideal gases and ideal gas mixtures
4.5 Standard temperature and pressure
4.6 Vapor pressure and Antoine equation
4.7 Process unit: Compressor

5. Multiphase Systems
5.1 Raoult’s law
5.2 Bubble and dew point
5.3 Building two-component P-xy and T-xy diagrams
5.4 Flash
5.5 Process unit: Absorber
5.6 Process unit: Stripping column
5.7 Process unit: Flash tank

6. Energy Balances
6.1 Forms of energy
6.2 First law of thermodynamics and the energy balance
6.3 Enthalpy and enthalpy paths
6.4 Heat capacity
6.5 Humidity
6.6 Process unit: Throttling valve
6.7 Process unit: Heat exchanger
6.8 Process unit: Turbine

7. Reaction + EB
7.1 Energy balances for reacting systems
7.2 Heat of reaction and Hess’s law
7.3 Heat of formation method
7.4 Combustion reactions and the energy balance
7.5 Simultaneous material and energy balances
7.6 Process unit: Fluidized bed reactor

8. Transient Systems
8.1 Transient material balances
8.2 Transient material balances with reaction
8.3 Transient energy balances
8.4 Process unit: Batch reactor

9. Spreadsheets
9.1 Spreadsheet basics
9.2 Spreadsheet formulas
9.3 Functions
9.4 Creating a chart

10. Appendix
10.1 Unit Conversions
10.2 Nomenclature
10.3 Finding data and correlations
10.4 Periodic table of the elements
10.5 Physical properties
10.6 Properties of subcooled liquid water
10.7 Saturated water – temperature table
10.8 Saturated water – pressure table
10.9 Superheated vapor water/steam table
10.10 Vapor pressure
10.11 Heat capacity
10.12 Heat of solution for three common solutions